|   | 
Details
   web
Record
Author Gazitua, M.C.; Morgante, V.; Poupin, M.J.; Ledger, T.; Rodriguez-Valdecantos, G.; Herrera, C.; Gonzalez-Chavez, M.D.; Ginocchio, R.; Gonzalez, B.
Title The microbial community from the early-plant colonizer (Baccharis linearis) is required for plant establishment on copper mine tailings Type
Year 2021 Publication Scientific Reports Abbreviated Journal Sci. Rep.
Volume 11 Issue 1 Pages 10448
Keywords BACTERIAL COMMUNITIES; HEAVY-METALS; PHYTOSTABILIZATION; REVEGETATION; RHIZOSPHERE; REMEDIATION; IMPACT; GROWTH; NORTH
Abstract Plants must deal with harsh environmental conditions when colonizing abandoned copper mine tailings. We hypothesized that the presence of a native microbial community can improve the colonization of the pioneer plant, Baccharis linearis, in soils from copper mining tailings. Plant growth and microbial community compositions and dynamics were determined in cultivation pots containing material from two abandoned copper mining tailings (Huana and Tambillos) and compared with pots containing fresh tailings or surrounding agricultural soil. Controls without plants or using irradiated microbe-free substrates, were also performed. Results indicated that bacteria (Actinobacteria, Gammaproteobacteria, and Firmicutes groups) and fungi (Glomus genus) are associated with B. linearis and may support plant acclimation, since growth parameters decreased in both irradiated (transiently without microbial community) and fresh tailing substrates (with a significantly different microbial community). Consistently, the composition of the bacterial community from abandoned copper mining tailings was more impacted by plant establishment than by differences in the physicochemical properties of the substrates. Bacteria located at B. linearis rhizoplane were clearly the most distinct bacterial community compared with those of fresh tailings, surrounding soil and non-rhizosphere abandoned tailings substrates. Beta diversity analyses showed that the rhizoplane bacterial community changed mainly through species replacement (turnover) than species loss (nestedness). In contrast, location/geographical conditions were more relevant than interaction with the plants, to explain fungal community differences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes WOS:000658433400011 Approved
Call Number UAI @ alexi.delcanto @ Serial 1425
Permanent link to this record