Record |
Author |
Ashina, C.; Pugazhenthiran, N.; Sathishkumar, P.; Selvaraj, M.; Assiri, M.A.; Rajasekaran, C.; Gracia-Pinilla, M.A.; Mangalaraja, R.V. |
Title |
Ultra-small Ni@NiFe2O4/TiO2 magnetic nanocomposites activated peroxymonosulphate for solar light-driven photocatalytic mineralization of Simazine |
Type |
|
Year |
2023 |
Publication |
Journal of Environmental Chemical Engineering |
Abbreviated Journal |
J. Environ. Chem. Eng. |
Volume |
11 |
Issue |
6 |
Pages |
111342 |
Keywords |
Simazine; Photocatalysis; Sonochemical approach; HPLC; Mineralization; Hydroxyl radicals |
Abstract |
In the heterogeneous photocatalytic degradation of environmental contaminants the recovery, reuse of employed nanocatalyst was crucial and it is essentially required for the scale up applications. Besides, designing a magnetic material with heterojunction that can effectively oxidize the toxic organic contaminants to non-toxic substance under different reaction conditions including direct solar light irradiation remains a challenge. Considering the above facts, herein, we tailored heterojunction between the magnetic materials and non-magnetic materials with ultra-small Ni nanoparticles modified NiFe2O4/TiO2 nanostructures (Ni@NiFe2O4/TiO2 magnetic nanocomposites) through a simple sonochemical route. The Raman phonons at similar to 540 cm(-1) consistent to nickel metal nanoparticles and the spinel ferrites crystal structure confirmed the formation of Ni@NiFe2O4/TiO2 magnetic nanocomposites. The reduced optical bandgap of the resulting nanocomposites indicated the effective absorption of direct solar light irradiation when compared to the bare TiO2. Thus in-turn, enhanced the photocatalytic efficiency of simazine degradation in the presence of Ni@NiFe2O4/TiO2 magnetic nanocomposites (k= 11.0 x 10(-4) s(-1)) and augmented the activation of peroxymonosulphate (PMS) in the presence of Ni@NiFe2O4/TiO2 magnetic nanocomposites (k= 32.5 x 10(-4) s(-1)). Ni@NiFe2O4/TiO2 +PMS exhibited 3 folds enhanced efficiency in the presence of sunlight. The as-prepared NiFe2O4/TiO2 magnetic nanocatalysts were more stable and the efficiency of simazine oxidation was approximately same for the continuous five cycles at the optimized experimental conditions. The Ni@NiFe2O4/TiO2 magnetic nanocomposites preparation and the activation of PMS may promise the applications in an efficient wastewater treatment. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2213-2929 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001111068900001 |
Approved |
|
Call Number |
UAI @ alexi.delcanto @ |
Serial |
1926 |
Permanent link to this record |