|   | 
Details
   web
Records
Author Barrera, J.; Lagos, G.
Title Limit distributions of the upper order statistics for the Levy-frailty Marshall-Olkin distribution Type
Year 2020 Publication Extremes Abbreviated Journal Extremes
Volume 23 Issue Pages 603-628
Keywords Marshall-Olkin distribution; Dependent random variables; Upper order statistics; Extreme-value theory; Reliability
Abstract The Marshall-Olkin (MO) distribution is considered a key model in reliability theory and in risk analysis, where it is used to model the lifetimes of dependent components or entities of a system and dependency is induced by “shocks” that hit one or more components at a time. Of particular interest is the Levy-frailty subfamily of the Marshall-Olkin (LFMO) distribution, since it has few parameters and because the nontrivial dependency structure is driven by an underlying Levy subordinator process. The main contribution of this work is that we derive the precise asymptotic behavior of the upper order statistics of the LFMO distribution. More specifically, we consider a sequence ofnunivariate random variables jointly distributed as a multivariate LFMO distribution and analyze the order statistics of the sequence asngrows. Our main result states that if the underlying Levy subordinator is in the normal domain of attraction of a stable distribution with index of stability alpha then, after certain logarithmic centering and scaling, the upper order statistics converge in distribution to a stable distribution if alpha> 1 or a simple transformation of it if alpha <= 1. Our result can also give easily computable confidence intervals for the last failure times, provided that a proper convergence analysis is carried out first.
Address [Barrera, Javiera; Lagos, Guido] Univ Adolfo Ibanez, Fac Engn & Sci, Av Diagonal Las Torres 2640, Santiago, Chile, Email: javiera.barrera@uai.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-1999 ISBN Medium
Area Expedition Conference
Notes WOS:000557129100001 Approved
Call Number UAI @ eduardo.moreno @ Serial 1218
Permanent link to this record
 

 
Author Diaz-Rullo, J.; Rodriguez-Valdecantos, G.; Torres-Rojas, F.; Cid, L.; Vargas, I.T.; Gonzalez, B.; Gonzalez-Pastor, J.E.
Title Mining for Perchlorate Resistance Genes in Microorganisms From Sediments of a Hypersaline Pond in Atacama Desert, Chile Type
Year 2021 Publication Frontiers In Microbiology Abbreviated Journal Front. Microbiol.
Volume 12 Issue Pages 723874
Keywords perchlorate-resistance; oxidative stress; tRNA modification; DNA repair; protein damage; hypersaline environments; Atacama Desert; Mars
Abstract Perchlorate is an oxidative pollutant toxic to most of terrestrial life by promoting denaturation of macromolecules, oxidative stress, and DNA damage. However, several microorganisms, especially hyperhalophiles, are able to tolerate high levels of this compound. Furthermore, relatively high quantities of perchlorate salts were detected on the Martian surface, and due to its strong hygroscopicity and its ability to substantially decrease the freezing point of water, perchlorate is thought to increase the availability of liquid brine water in hyper-arid and cold environments, such as the Martian regolith. Therefore, perchlorate has been proposed as a compound worth studying to better understanding the habitability of the Martian surface. In the present work, to study the molecular mechanisms of perchlorate resistance, a functional metagenomic approach was used, and for that, a small-insert library was constructed with DNA isolated from microorganisms exposed to perchlorate in sediments of a hypersaline pond in the Atacama Desert, Chile (Salar de Maricunga), one of the regions with the highest levels of perchlorate on Earth. The metagenomic library was hosted in Escherichia coli DH10B strain and exposed to sodium perchlorate. This technique allowed the identification of nine perchlorate-resistant clones and their environmental DNA fragments were sequenced. A total of seventeen ORFs were predicted, individually cloned, and nine of them increased perchlorate resistance when expressed in E. coli DH10B cells. These genes encoded hypothetical conserved proteins of unknown functions and proteins similar to other not previously reported to be involved in perchlorate resistance that were related to different cellular processes such as RNA processing, tRNA modification, DNA protection and repair, metabolism, and protein degradation. Furthermore, these genes also conferred resistance to UV-radiation, 4-nitroquinoline-N-oxide (4-NQO) and/or hydrogen peroxide (H2O2), other stress conditions that induce oxidative stress, and damage in proteins and nucleic acids. Therefore, the novel genes identified will help us to better understand the molecular strategies of microorganisms to survive in the presence of perchlorate and may be used in Mars exploration for creating perchlorate-resistance strains interesting for developing Bioregenerative Life Support Systems (BLSS) based on in situ resource utilization (ISRU).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-302X ISBN Medium
Area Expedition Conference
Notes WOS:000681631900001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1456
Permanent link to this record