|   | 
Details
   web
Records
Author Jordan, A.; Bakos, G.A.; Bayliss, D.; Bento, J.; Bhatti, W.; Brahm, R.; Csubry, Z.; Espinoza, N.; Hartman, J.D.; Henning, T.; Mancini, L.; Penev, K.; Rabus, M.; Sarkis, P.; Suc, V.; de Val-Borro, M.; Zhou, G.; Butler, R.P.; Teske, J.; Crane, J.; Shectman, S.; Tan, T.G.; Thompson, I.; Wallace, J.J.; Lazar, J.; Papp, I.; Sari, P.
Title HATS-37Ab and HATS-38b: Two Transiting Hot Neptunes in the Desert* Type
Year 2020 Publication Astronomical Journal Abbreviated Journal Astron. J.
Volume 160 Issue 5 Pages 14 pp
Keywords Exoplanets; Hot Neptunes
Abstract We report the discovery of two transiting Neptunes by the HATSouth survey. The planet HATS-37Ab has a mass of 0.099 +/- 0.042 MJ (31.5.+/-.13.4M(circle dot)) and a radius of 0.606 +/- 0.016 R-J, and is on a P = 4.3315 day orbit around a V = 12.266 +/- 0.030 mag, 0.843(-0.012)(+0.017)M(circle dot) star with a radius of 0.877(-0.012)(+0.019) R-circle dot We also present evidence that the star HATS-37A has an unresolved stellar companion HATS-37B, with a photometrically estimated mass of 0.654 +/- 0.033.M-circle dot The planet HATS-38b has a mass of 0.074. 0.011MJ (23.5 +/- 3.5M(circle dot)) and a radius of 0.614 +/- 0.017 R-J, and is on a P = 4.3750 day orbit around a V = 12.411 +/- 0.030 mag, 0.890(-0.012)(+0.016) M-circle dot star with a radius of 1.105 +/- 0.016.R-circle dot Both systems appear to be old, with isochrone-based ages of 11.46(-1.45)(+0.79) Gyr, and 11.89 +/- 0.60 Gyr, respectively. Both HATS-37Ab and HATS-38b lie in the Neptune desert and are thus examples of a population with a low occurrence rate. They are also among the lowest-mass planets found from ground-based wide-field surveys to date.
Address [Jordan, A.; Brahm, R.; Suc, V] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Av Diagonal Tones 2640, Santiago, Chile, Email: andres.jordan@uai.cl
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6256 ISBN Medium
Area Expedition Conference
Notes WOS:000584931800001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1261
Permanent link to this record
 

 
Author Trifonov, T.; Brahm, R.; Espinoza, N.; Henning, T.; Jordan, A.; Nesvorny, D.; Dawson, R.I.; Lissauer, J.J.; Lee, M.H.; Kossakowski, D.; Rojas, F.I.; Hobson, M.J.; Sarkis, P.; Schlecker, M.; Bitsch, B.; Bakos, G.A.; Barbieri, M.; Bhatti, W.; Butler, R.P.; Crane, J.D.; Nandakumar, S.; Diaz, M.R.; Shectman, S.; Teske, J.; Torres, P.; Suc, V.; Vines, J.I.; Wang, S.R.X.; Ricker, G.R.; Shporer, A.; Vanderburg, A.; Dragomir, D.; Vanderspek, R.; Burke, C.J.; Daylan, T.; Shiao, B.; Jenkins, J.M.; Wohler, B.; Seager, S.; Winn, J.N.
Title A Pair of Warm Giant Planets near the 2:1 Mean Motion Resonance around the K-dwarf Star TOI-2202* Type
Year 2021 Publication Astronomical Journal Abbreviated Journal Astron. J.
Volume 162 Issue 6 Pages 283
Keywords EARTH-SIZED PLANET; SUPER-EARTH; HOT JUPITERS; TESS; SYSTEMS; TRANSIT; NEPTUNE; MODEL; PERIODOGRAM; SCATTERING
Abstract TOI-2202 b is a transiting warm Jovian-mass planet with an orbital period of P = 11.91 days identified from the Full Frame Images data of five different sectors of the TESS mission. Ten TESS transits of TOI-2202 b combined with three follow-up light curves obtained with the CHAT robotic telescope show strong transit timing variations (TTVs) with an amplitude of about 1.2 hr. Radial velocity follow-up with FEROS, HARPS, and PFS confirms the planetary nature of the transiting candidate (a (b) = 0.096 +/- 0.001 au, m (b) = 0.98 +/- 0.06 M (Jup)), and a dynamical analysis of RVs, transit data, and TTVs points to an outer Saturn-mass companion (a (c) = 0.155 +/- 0.002 au, m (c) = 0.37 +/- 0.10 M (Jup)) near the 2:1 mean motion resonance. Our stellar modeling indicates that TOI-2202 is an early K-type star with a mass of 0.82 M (circle dot), a radius of 0.79 R (circle dot), and solar-like metallicity. The TOI-2202 system is very interesting because of the two warm Jovian-mass planets near the 2:1 mean motion resonance, which is a rare configuration, and their formation and dynamical evolution are still not well understood.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6256 ISBN Medium
Area Expedition Conference
Notes WOS:000725244600001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1511
Permanent link to this record
 

 
Author Trifonov, T.; Brahm, R.; Jordan, A.; Hartogh, C.; Henning, T.; Hobson, M.J.; Schlecker, M.; Howard, S.; Reichardt, F.; Espinoza, N.; Lee, M.H.; Nesvorny, D.; Rojas, F.I.; Barkaoui, K.; Kossakowski, D.; Boyle, G.; Dreizler, S.; Kurster, M.; Heller, R.; Guillot, T.; Triaud, A.H.M.J.; Abe, L.; Agabi, A.; Bendjoya, P.; Crouzet, N.; Dransfield, G.; Gasparetto, T.; Gunther, M.N.; Marie-Sainte, W.; Mekarnia, D.; Suarez, O.; Teske, J.; Butler, R.P.; Crane, J.D.; Shectman, S.; Ricker, G.R.; Shporer, A.; Vanderspek, R.; Jenkins, J.M.; Wohler, B.; Collins, K.A.; Collins, K.I.; Ciardi, D.R.; Barclay, T.; Mireles, I.; Seager, S.; Winn, J.N.
Title TOI-2525 b and c: A Pair of Massive Warm Giant Planets with Strong Transit Timing Variations Revealed by TESS Type
Year 2023 Publication Astronomical Journal Abbreviated Journal Astron. J.
Volume 165 Issue 4 Pages 179
Keywords HOT JUPITERS; EXOPLANET SURVEY; SUPER-EARTH; LOW-DENSITY; SYSTEMS; NEPTUNE; STAR; II.; POPULATION; MIGRATION
Abstract The K-type star TOI-2525 has an estimated mass of M = 0.849(-0.033)(+0.024) M-circle dot and radius of R = 0.785(-0.007)(+0.007) R-circle dot observed by the TESS mission in 22 sectors (within sectors 1 and 39). The TESS light curves yield significant transit events of two companions, which show strong transit timing variations (TTVs) with a semiamplitude of similar to 6 hr. We performed TTV dynamical and photodynamical light-curve analysis of the TESS data combined with radial velocity measurements from FEROS and PFS, and we confirmed the planetary nature of these companions. The TOI-2525 system consists of a transiting pair of planets comparable to Neptune and Jupiter with estimated dynamical masses of m(b) = 0.088(-0.004)(+0.005) and m(c) = 0.709(-0.033)(+0.034) M-Jup, radii of r(b) = 0.88(-0.02)(+0.02) and r(c) = 0.98(-0.02)(+0.02) R-Jup, and orbital periods of P-b = 23.288(-0.002)(+0.001) and P-c = 49.260(-0.001)(+0.001) days for the inner and outer planet, respectively. The period ratio is close to the 2:1 period commensurability, but the dynamical simulations of the system suggest that it is outside the mean-motion resonance (MMR) dynamical configuration. Object TOI-2525 b is among the lowest-density Neptune-mass planets known to date, with an estimated median density of rho(b) = 0.174(-0.015)(+0.016) g cm(-3). The TOI-2525 system is very similar to the other K dwarf systems discovered by TESS, TOI-2202 and TOI-216, which are composed of almost identical K dwarf primaries and two warm giant planets near the 2:1 MMR.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6256 ISBN Medium
Area Expedition Conference
Notes WOS:000960020200001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1835
Permanent link to this record