toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Norambuena-Contreras, J.; Gonzalez-Torre, I.; Vivanco, J.F.; Gacitua, W. pdf  doi
openurl 
  Title Nanomechanical properties of polymeric fibres used in geosynthetics Type Journal Article
  Year 2016 Publication Polymer Testing Abbreviated Journal Polym. Test  
  Volume 54 Issue Pages 67-77  
  Keywords Polymeric fibres; Geosynthetics; Nanomechanical properties; Nanoindentation; Damage evaluation  
  Abstract Geosynthetics are composite materials manufactured using different types of polymeric fibres, usually employed as anti-reflective cracking systems in asphalt pavements. Materials that compose geosynthetics can be damaged due to mechanical and thermal effects produced during the installation process under hot mix asphalts. In this paper, different polymeric fibres extracted from geosynthetics have been evaluated using nanoindentation tests. The main objective was to evaluate the effect of installation process (dynamic compaction and thermal damage) on the mechanical behaviour of individual polymeric fibres at nano-scale. To do this, elastic modulus (E) and hardness (H) of three different polymeric fibres commonly used in geosynthetics (polypropylene, polyester and polyvinyl-alcohol), in two testing directions and under two different states have been studied. Main conclusions of this work are that mechanical properties of geosynthetics individual fibres can change after installation, producing changes in the behaviour of geosynthetics at macro-scale with consequences in the pavement functionality, and that these changes are different depending on the material that composed the fibres. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address [Norambuena-Contreras, J.; Gonzalez-Torre, I.] Univ Bio Bio, LabMat UBB, Dept Civil & Environm Engn, Concepcion, Chile, Email: irene.gonzaleztorre@gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Sci Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-9418 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000382798300009 Approved no  
  Call Number UAI @ eduardo.moreno @ Serial 651  
Permanent link to this record
 

 
Author Slane, J.; Vivanco, J.; Ebenstein, D.; Squire, M.; Ploeg, H.L. pdf  doi
openurl 
  Title Multiscale characterization of acrylic bone cement modified with functionalized mesoporous silica nanoparticles Type Journal Article
  Year 2014 Publication Journal Of The Mechanical Behavior Of Biomedical Materials Abbreviated Journal J. Mech. Behav. Biomed. Mater.  
  Volume 37 Issue Pages 141-152  
  Keywords Bone cement; Mechanical properties; Nanoindentation; Reinforced polymer; Orthopedics  
  Abstract Acrylic bone cement is widely used to anchor orthopedic implants to bone and mechanical failure of the cement mantle surrounding an implant can contribute to aseptic loosening. In an effort to enhance the mechanical properties of bone cement, a variety of nanoparticles and fibers can be incorporated into the cement matrix. Mesoporous silica nanoparticles (MSNs) are a class of particles that display high potential for use as reinforcement within bone cement. Therefore, the purpose of this study was to quantify the impact of modifying an acrylic cement with various low-loadings of mesoporous silica. Three types of MSNs (one plain variety and two modified with functional groups) at two loading ratios (0.1 and 0.2 wt/wt) were incorporated into a commercially available bone cement. The mechanical properties were characterized using four-point bending, microindentation and nanoindentation (static, stress relaxation, and creep) while material properties were assessed through dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, FTIR spectroscopy, and scanning electron microscopy. Four-point flexural testing and nanoindentation revealed minimal impact on the properties of the cements, except for several changes in the nano-level static mechanical properties. Conversely, microindentation testing demonstrated that the addition of MSNs significantly increased the microhardness. The stress relaxation and creep properties of the cements measured with nanoindentation displayed no effect resulting from the addition of MSNs. The measured material properties were consistent among all cements. Analysis of scanning electron micrographs images revealed that surface functionalization enhanced particle dispersion within the cement matrix and resulted in fewer particle agglomerates. These results suggest that the loading ratios of mesoporous silica used in this study were not an effective reinforcement material. Future work should be conducted to determine the impact of higher MSN loading ratios and alternative functional groups. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address [Slane, Josh; Ploeg, Heidi-Lynn] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA, Email: jaslane@wisc.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-6161 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000340987100015 Approved no  
  Call Number UAI @ eduardo.moreno @ Serial 404  
Permanent link to this record
 

 
Author Slane, J.; Vivanco, J.F.; Squire, M.; Ploeg, H.L. pdf  doi
openurl 
  Title Characterization of the quasi-static and viscoelastic properties of orthopaedic bone cement at the macro and nanoscale Type Journal Article
  Year 2017 Publication Journal Of Biomedical Materials Research Part B-Applied Biomaterials Abbreviated Journal J. Biomed. Mater. Res. Part B  
  Volume 105 Issue 6 Pages 1461-1468  
  Keywords bone cement; nanoindentation; mechanical testing; creep; orthopaedics  
  Abstract Acrylic bone cement is often used in total joint replacement procedures to anchor an orthopaedic implant to bone. Bone cement is a viscoelastic material that exhibits creep and stress relaxation properties, which have been previously characterized using a variety of techniques such as flexural testing. Nanoindentation has become a popular method to characterize polymer mechanical properties at the nanoscale due to the technique's high sensitivity and the small sample volume required for testing. The purpose of the present work therefore was to determine the mechanical properties of bone cement using traditional macroscale techniques and compare the results to those obtained from nanoindentation. To this end, the quasi-static and viscoelastic properties of two commercially available cements, Palacos and Simplex, were assessed using a combination of three-point bending and nanoindentation. Quasi-static properties obtained from nanoindentation tended to be higher relative to three-point bending. The general displacement and creep compliance trends were similar for the two methods. These findings suggest that nanoindentation is an attractive characterization technique for bone cement, due to the small sample volumes required for testing. This may prove particularly useful in testing failed/ retrieved cement samples from patients where material availability is typically limited. (C) 2016 Wiley Periodicals, Inc.  
  Address [Slane, Josh] Katholieke Univ Leuven, Univ Hosp Leuven, Inst Orthopaed Res & Training, Pellenberg, Belgium, Email: joshua.slane@kuleuven.be  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1552-4973 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000407055400016 Approved no  
  Call Number UAI @ eduardo.moreno @ Serial 752  
Permanent link to this record
 

 
Author Vivanco, J.; Jakes, J.E.; Slane, J.; Ploeg, H.L. pdf  doi
openurl 
  Title Accounting for structural compliance in nanoindentation measurements of bioceramic bone scaffolds Type Journal Article
  Year 2014 Publication Ceramics International Abbreviated Journal Ceram. Int.  
  Volume 40 Issue 8 Pages 12485-12492  
  Keywords Bioceramic; Bone scaffold; Nanoindentation; Musculoskeletal injuries  
  Abstract Structural properties have been shown to be critical in the osteoconductive capacity and strength of bioactive ceramic bone scaffolds. Given the cellular foam-like structure of bone scaffolds, nanoindentation has been used as a technique to assess the mechanical properties of individual components of the scaffolds. Nevertheless, nanoindents placed on scaffolds may violate the rigid support assumption of the standard Oliver-Pharr method currently used in evaluating the Meyer hardness, H, and elastic modulus, E-s, of such structures. Thus, the objective of this research was to use the structural compliance method to assess whether or not specimen-scale flexing may occur during nanoindentation of bioceramic bone scaffolds and to remove the associated artifact on the H and E-s if it did occur. Scaffolds were fabricated using tricalcium phosphate and sintered at 950 degrees C and 1150 degrees C, and nanoindents were placed in three different (center, edge, and corner) scaffold locations. Using only the standard Oliver-Pharr analysis it was found that H and E-s were significantly affected by both sintering temperature and nanoindents location (p < 0.05). However, specimen-scale flexing occurred during nanoindentation in the 1150 degrees C corner location. After removing the effects of the flexing from the measurement using the structural compliance method, it was concluded that H and E-s were affected only by the sintering temperature (p < 0.05) irrespective of the nanoindent locations. These results show that specimen-scale flexing may occur during nanoindentation of components in porous bioceramic scaffolds or in similar structure biomaterials, and that the structural compliance method must be utilized to accurately assess H and E-s of these components. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.  
  Address [Vivanco, Juan; Slane, Josh; Ploeg, Heidi-Lynn] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA, Email: vivanco@wisc.edu  
  Corporate Author Thesis  
  Publisher Elsevier Sci Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-8842 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000340328600122 Approved no  
  Call Number UAI @ eduardo.moreno @ Serial 400  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: