toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gacitua, M.A.; Gonzalez, B.; Majone, M.; Aulenta, F. pdf  doi
openurl 
  Title Boosting the electrocatalytic activity of Desulfovibrio paquesii biocathodes with magnetite nanoparticles Type Journal Article
  Year 2014 Publication International Journal Of Hydrogen Energy Abbreviated Journal Int. J. Hydrog. Energy  
  Volume 39 Issue 27 Pages 14540-14545  
  Keywords Microbial biocathode; Magnetite nanoparticles; Hydrogen generation; Microbial electrolysis; Desulfovibrio sp.  
  Abstract The production of reduced value-added chemicals and fuels using microorganisms as cheap cathodic electrocatalysts is recently attracting considerable attention. A robust and sustainable production is, however, still greatly hampered by a poor understanding of electron transfer mechanisms to microorganisms and the lack of strategies to improve and manipulate thereof. Here, we investigated the use of electrically-conductive magnetite (Fe3O4) nanoparticles to improve the electrocatalytic activity of a H-2-producing Desulfovibrio paquesii biocathode. Microbial biocathodes supplemented with a suspension of nanoparticles displayed increased H-2 production rates and enhanced stability compared to unamended ones. Cyclic voltammetry confirmed that Faradaic currents involved in microbially-catalyzed H-2 evolution were enhanced by the addition of the nanoparticles. Possibly, nanoparticles improve the extracellular electron path to the microorganisms by creating composite networks comprising of mineral particles and microbial cells. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.  
  Address [Gacitua, Manuel A.; Gonzalez, Bernardo] Univ Adolfo Ibanez, Ctr Appl Ecol & Sustainabil CAPES, Lab Bioingn, Fac Ingn & Ciencias, Santiago 7941169, Chile, Email: mgacitua.pdc@uai.cl;  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341897500004 Approved no  
  Call Number UAI @ eduardo.moreno @ Serial 414  
Permanent link to this record
 

 
Author Slane, J.; Vivanco, J.; Rose, W.; Ploeg, H.L.; Squire, M. pdf  doi
openurl 
  Title Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles Type Journal Article
  Year 2015 Publication Materials Science & Engineering C-Materials For Biological Applications Abbreviated Journal Mater. Sci. Eng. C-Mater. Biol. Appl.  
  Volume 48 Issue Pages 188-196  
  Keywords Bone cement; Infection; Nanoparticles; Antimicrobial; Mechanical properties  
  Abstract Prosthetic joint infection is one of the most serious complications that can lead to failure of a total joint replacement. Recently, the rise of multidrug resistant bacteria has substantially reduced the efficacy of antibiotics that are typically incorporated into acrylic bone cement. Silver nanoparticles (AgNPs) are an attractive alternative to traditional antibiotics resulting from their broad-spectrum antimicrobial activity and low bacterial resistance. The purpose of this study, therefore, was to incorporate metallic silver nanoparticles into acrylic bone cement and quantify the effects on the cement's mechanical, material and antimicrobial properties. AgNPs at three loading ratios (025, 0.5, and 1.0% wt/wt) were incorporated into a commercial bone cement using a probe sonication technique. The resulting cements demonstrated mechanical and material properties that were not substantially different from the standard cement. Testing against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer and time-kill assays demonstrated no antimicrobial activity against planktonic bacteria. In contrast, cements modified with AgNPs significantly reduced biofilm formation on the surface of the cement. These results indicate that AgNP-loaded cement is of high potential for use in primary arthroplasty where prevention of bacterial surface colonization is vital. (C) 2014 Elsevier B.V. All rights reserved.  
  Address [Slane, Josh; Squire, Matthew] Univ Wisconsin, Dept Orthoped & Rehabil, Madison, WI USA, Email: jaslane@wisc.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-4931 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000348749200025 Approved no  
  Call Number UAI @ eduardo.moreno @ Serial 623  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: