toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Morales, N.; del Rio, A.V.; Vazquez-Padin, J.R.; Mendez, R.; Campos, J.L.; Mosquera-Corral, A. pdf  doi
openurl 
  Title The granular biomass properties and the acclimation period affect the partial nitritation/anammox process stability at a low temperature and ammonium concentration Type
  Year 2016 Publication Process Biochemistry Abbreviated Journal Process Biochem.  
  Volume 51 Issue 12 Pages (down) 2134-2142  
  Keywords Anammox; AOB; Granules; Nitrogen; NOB; Partial nitritation  
  Abstract Extensive research on the anammox-based processes under mainstream conditions is currently in progress. Most studies have used a long acclimation period for the partial nitritation-anammox (PN-An) sludge at a low temperature and ammonium concentration. However, in this study, the results demonstrated that PN-An granular biomass produced under sidestream conditions (30 degrees C and 1000 mg NH4+-N/L) can operate at 15 degrees C and 50 mg NH4+-N/L without acclimation. The nitrogen removal efficiency was 70% and was stable for 60 days. The long-termoperation of the system with progressive adaptation provided important information for process optimization. Control of the dissolved oxygen (DO) concentration was crucial to maintain the balance between ammonia oxidizing bacteria (AOB) and anammox bacteria activities. A calculation of the oxygen penetration depth inside the granules is proposed to estimate an adequate DO level, which allows for the definition of the aerobic and anoxic zones that depend on the temperature, the size distribution and the granule density. However, the development of NOB was difficult to avoid with DO control alone. The selective washing-out of the floccular biomass, which contains mainly NOB, is proposed, leaving the granular fraction with the AOB and anammox bacteria in the system. (C) 2016 Published by Elsevier Ltd.  
  Address [Morales, Nicolas; del Rio, Angeles Val; Mendez, Ramon; Campos, Jose L.; Mosquera-Corral, Anuska] Univ Santiago de Compostela, Inst Technol, Dept Chem Engn, E-15705 Santiago De Compostela, Spain, Email: nicolas.morales@usc.es;  
  Corporate Author Thesis  
  Publisher Elsevier Sci Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-5113 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000390733500029 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 685  
Permanent link to this record
 

 
Author Kraiser, T.; Gras, D.E.; Gutierrez, A.G.; Gonzalez, B.; Gutierrez, R.A. pdf  doi
openurl 
  Title A holistic view of nitrogen acquisition in plants Type
  Year 2011 Publication Journal Of Experimental Botany Abbreviated Journal J. Exp. Bot.  
  Volume 62 Issue 4 Pages (down) 1455-1466  
  Keywords Bacteria; nitrogen; nitrogen acquisition; plants  
  Abstract Nitrogen (N) is the mineral nutrient required in the greatest amount and its availability is a major factor limiting growth and development of plants. As sessile organisms, plants have evolved different strategies to adapt to changes in the availability and distribution of N in soils. These strategies include mechanisms that act at different levels of biological organization from the molecular to the ecosystem level. At the molecular level, plants can adjust their capacity to acquire different forms of N in a range of concentrations by modulating the expression and function of genes in different N uptake systems. Modulation of plant growth and development, most notably changes in the root system architecture, can also greatly impact plant N acquisition in the soil. At the organism and ecosystem levels, plants establish associations with diverse microorganisms to ensure adequate nutrition and N supply. These different adaptive mechanisms have been traditionally discussed separately in the literature. To understand plant N nutrition in the environment, an integrated view of all pathways contributing to plant N acquisition is required. Towards this goal, in this review the different mechanisms that plants utilize to maintain an adequate N supply are summarized and integrated.  
  Address [Kraiser, Tatiana; Gras, Diana E.; Gutierrez, Rodrigo A.] Pontificia Univ Catolica Chile, Dept Mol Genet & Microbiol, Ctr Genome Regulat, Santiago 8331010, Chile, Email: rgutierrez@bio.puc.cl  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000286989700010 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 124  
Permanent link to this record
 

 
Author Morales, N.; del Rio, A.V.; Vazquez-Padin, J.R.; Gutierrez, R.; Fernandez-Gonzalez, R.; Icaram, P.; Rogalla, F.; Campos, J.L.; Mendez, R.; Mosquera-Corral, A. pdf  doi
openurl 
  Title Influence of dissolved oxygen concentration on the start-up of the anammox-based process: ELAN (R) Type
  Year 2015 Publication Water Science And Technology Abbreviated Journal Water Sci. Technol.  
  Volume 72 Issue 4 Pages (down) 520-527  
  Keywords anammox; autotrophic nitrogen removal; dissolved oxygen; granule; oxygen microprofiles  
  Abstract The anammox-based process ELAN (R) was started-up in two different sequencing batch reactor (SBR) pilot plant reactors treating municipal anaerobic digester supernatant. The main difference in the operation of both reactors was the dissolved oxygen (DO) concentration in the bulk liquid. SBR-1 was started at a DO value of 0.4 mg O-2/L whereas SBR-2 was started at DO values of 3.0 mg O-2/L. Despite both reactors working at a nitrogen removal rate of around 0.6 g N/(L d), in SBR-1, granules represented only a small fraction of the total biomass and reached a diameter of 1.1 mm after 7 months of operation, while in SBR-2 the biomass was mainly composed of granules with an average diameter of 3.2 mm after the same operational period. Oxygen microelectrode profiling revealed that granules from SBR-2 where only fully penetrated by oxygen with DO concentrations of 8 mg O2/L while granules from SBR-1 were already oxygen penetrated at DO concentrations of 1 mg O2/L. In this way granules from SBR-2 performed better due to the thick layer of ammonia oxidizing bacteria, which accounted for up to 20% of all the microbial populations, which protected the anammox bacteria from non-suitable liquid media conditions.  
  Address [Morales, N.; Vazquez-Padin, J. R.; Gutierrez, R.; Fernandez-Gonzalez, R.; Icaram, P.; Rogalla, F.] Guillarei WWTP, FCC Aqualia, E-36720 Tui, Spain, Email: nicolas.morales.pereira@fcc.es  
  Corporate Author Thesis  
  Publisher Iwa Publishing Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000359387200003 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 518  
Permanent link to this record
 

 
Author Diaz, C.; Belmonte, M.; Campos, J.L.; Franchi, O.; Faundez, M.; Vidal, G.; Argiz, L.; Pedrouso, A.; del Rio, A.V.; Mosquera-Corral, A. doi  openurl
  Title Limits of the anammox process in granular systems to remove nitrogen at low temperature and nitrogen concentration Type
  Year 2020 Publication Process Safety And Environmental Protection Abbreviated Journal Process Saf. Environ. Protect.  
  Volume 138 Issue Pages (down) 349-355  
  Keywords Anammox; Dissolved oxygen; Granular biomass; Nitrogen; SRT; Temperature  
  Abstract When partial nitritation-anammox (PN-AMX) processes are applied to treat the mainstream in wastewater treatment plants (WWTPs), it is difficult to fulfil the total nitrogen (TN) quality requirements established by the European Union (<10g TN/m(3)). The operation of the anammox process was evaluated here in a continuous stirred tank reactor operated at 15 degrees C and fed with concentrations of 50 g TN/m(3) (1.30 +/- 0.23 g NO2- -N/g NH4+-N). Two different aspects were identified as crucial, limiting nitrogen removal efficiency. On the one hand, the oxygen transferred from the air in contact with the mixed liquor surface favoured the nitrite oxidation to nitrate (up to 75 %) and this nitrate, in addition to the amount produced from the anammox reaction itself, worsened the effluent quality. On the other hand, the mass transfer of ammonium and nitrite to be converted inside the anammox granules involves relatively large values of apparent affinity constants (k(NH4+app) : 0.50 g NH4+-N/m(3) ; k(NO2-app) 0.17 g NO2--N/m(3)) that favour the presence of these nitrogen compounds in the produced effluent. The careful isolation of the reactor from air seeping and the fixation of right hydraulic and solids retention times are expected to help the maintenance of stability and effluent quality. (C) 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.  
  Address [Diaz, Claudia; Belmonte, Marisol] Univ Playa Ancha, Fac Ingn, Lab Biotecnol Medio Ambiente & Ingn LABMAI, Avda Leopoldo Carvallo 270, Valparaiso 2340000, Chile, Email: jluis.campos@uai.cl  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-5820 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000538807400005 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 1193  
Permanent link to this record
 

 
Author Giustinianovich, E.A.; Campos, J.L.; Roeckel, M.D.; Estrada, A.J.; Mosquera-Corral, A.; del Rio, A.V. pdf  doi
openurl 
  Title Influence of biomass acclimation on the performance of a partial nitritation-anammox reactor treating industrial saline effluents Type
  Year 2018 Publication Chemosphere Abbreviated Journal Chemosphere  
  Volume 194 Issue Pages (down) 131-138  
  Keywords Anammox; Canning industry effluents; Nitrogen removal; Partial nitritation; Saline effluents  
  Abstract The performance of the partial nitritation/anammox processes was evaluated for the treatment of fish canning effluents. A sequencing batch reactor (SBR) was fed with industrial wastewater, with variable salt and total ammonium nitrogen (TAN) concentrations in the range of 1.75-18.00 g-NaCl L-1 and 112 – 267 mg-TAN L-1. The SBR operation was divided into two experiments: (A) progressive increase of salt concentrations from 1.75 to 1833 g-NaCl L-1; (B) direct application of high salt concentration (18 g-NaCl L-1). The progressive increase of NaCl concentration provoked the inhibition of the anammox biomass by up to 94% when 18 g-NaCl L-1 were added. The stable operation of the processes was achieved after 154 days when the nitrogen removal rate was 0.021 +/- 0.007 g N/L.d (corresponding to 30% of removal efficiency). To avoid the development of NOB activity at low salt concentrations and to stabilize the performance of the processes dissolved oxygen was supplied by intermittent aeration. A greater removal rate of 0.029 +/- 0.017 g-N L-1 d(-1) was obtained with direct exposure of the inoculum to 18 g-NaCl L-1 in less than 40 days. Also, higher specific activities than those from the inoculum were achieved for salt concentrations of 15 and 20 g-NaCl L-1 after 39 days of operation. This first study of the performance of the partial nitritation/anammox processes, to treat saline wastewaters, indicates that the acclimation period can be avoided to shorten the start-up period for industrial application purposes. Nevertheless, further experiments are needed in order to improve the efficiency of the processes. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address [Giustinianovich, Elisa A.; Roeckel, Marlene D.] Univ Concepcion, Dept Chem Engn, Concepcion, Chile, Email: mangeles.val@usc.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000423890700017 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 817  
Permanent link to this record
 

 
Author del Rio, A.V.; Pichel, A.; Fernandez-Gonzalez, N.; Pedrouso, A.; Fra-Vazquez, A.; Morales, N.; Mendez, R.; Campos, J.L.; Mosquera-Corral, A. pdf  doi
openurl 
  Title Performance and microbial features of the partial nitritation-anammox process treating fish canning wastewater with variable salt concentrations Type
  Year 2018 Publication Journal Of Environmental Management Abbreviated Journal J. Environ. Manage.  
  Volume 208 Issue Pages (down) 112-121  
  Keywords Autotrophic; Denitrification; Fish canning; Granule; Nitrogen  
  Abstract The partial nitritation-anammox (PN-AMX) process applied to wastewaters with high NaCl concentration was studied until now using simulated media, without considering the effect of organic matter concentration and the shift in microbial populations. This research work presents results on the application of this process to the treatment of saline industrial wastewater. Obtained results indicated that the PN-AMX process has the capability to recover its initial activity after a sudden/acute salt inhibition event (up to 16 g NaCl/L). With a progressive salt concentration increase for 150 days, the PN-AMX process was able to remove the 80% of the nitrogen at 7-9 g NaCl/L. The microbiological data indicated that NaCl and ammonia concentrations and temperature are important factors shaping PN-AMX communities. Thus, the NOB abundance (Nitrospira) decreases with the increase of the salt concentration, while heterotrophic denitrifiers are able to outcompete anammox aftet a peak of organic matter in the feeding. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address [Val del Rio, Angeles; Pichel, Andres; Fernandez-Gonzalez, Nuria; Pedrouso, Alba; Fra-Vazquez, Andrea; Mendez, Ramon; Mosquera-Corral, Anuska] Univ Santiago de Compostela, Sch Engn, Dept Chem Engn, E-15705 Santiago De Compostela, Spain, Email: mangeles.val@usc.es;  
  Corporate Author Thesis  
  Publisher Academic Press Ltd- Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000424074000011 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 818  
Permanent link to this record
 

 
Author Giustinianovich, E.A.; Campos, J.L.; Roeckel, M.D. pdf  doi
openurl 
  Title The presence of organic matter during autotrophic nitrogen removal: Problem or opportunity? Type
  Year 2016 Publication Separation And Purification Technology Abbreviated Journal Sep. Purif. Technol.  
  Volume 166 Issue Pages (down) 102-108  
  Keywords Anammox; Ammonia oxidation; Heterotrophic denitrification; Nitrogen removal; SNAD  
  Abstract The simultaneous nitrification, Anammox and denitrification (SNAD) process discovered six years ago is an adaptation of the autotrophic denitrification process that allows for treating nitrogen-rich wastewater streams with moderate amounts of organic carbon. Several authors have noted that it is possible to utilize organic carbon to promote nitrogen removal via the action of denitrifying microorganisms, which can remove the remnant nitrate produced by Anammox bacteria. Thus, SNAD systems can achieve nitrogen removal efficiencies higher than 89%, which is what is expected under autotrophic conditions. Three bacterial groups are responsible for SNAD reactions: ammonium-oxidizing bacteria (AOB), anaerobic ammonium-oxidizing bacteria (AnAOB) and heterotrophic bacteria (HB). Because HB will compete with AOB and AnAOB for oxygen and nitrite, respectively, the system should be operated in such way that a balance among the different bacterial populations is achieved. Here, the results reported in the literature are analyzed to define suitable characteristics of effluents for treatment and operational conditions to allow the SNAD process to be carried out with different types of technologies. (C) 2016 Elsevier B.V. All rights reserved.  
  Address [Giustinianovich, Elisa A.; Roeckel, Marlene D.] Univ Concepcion, Dept Chem Engn, Casilla 160-C, Concepcion, Chile, Email: mroeckel@udec.cl  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1383-5866 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376834400013 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 827  
Permanent link to this record
 

 
Author Pedrouso, A.; Aiartza, I.; Morales, N.; Vazquez-Padin, J.R.; Rogalla, F.; Campos, J.L.; Mosquera-Corral, A.; del Rio, A.V. pdf  doi
openurl 
  Title Pilot-scale ELAN (R) process applied to treat primary settled urban wastewater at low temperature via partial nitritation-anammox processes Type
  Year 2018 Publication Separation And Purification Technology Abbreviated Journal Sep. Purif. Technol.  
  Volume 200 Issue Pages (down) 94-101  
  Keywords Ananunox; Autotrophic nitrogen removal; Granular biomass; Mainstream; Partial nitritation  
  Abstract A single stage partial nitritation and anammox granular pilot scale reactor (600 L) was operated to treat primary settled sewage in an urban wastewater treatment plant. The fed wastewater contained low total nitrogen concentrations of 6-25 mg TN/L and the system operated without temperature control ranging from 18 to 12 degrees C. A control strategy, based on the pH value, was applied to stop the aeration supply. The pH set-point was fixed at 6.0 and allowed obtaining a total nitrogen removal efficiency approximately of 50% treating a load of 67 mg TN/(L.d) without the addition of any chemicals. Although nitrite oxidizing bacteria were present in the inoculated sludge, when the pH-based control was implemented (day 30) the ammonium oxidation was favored compared to the nitrite oxidation activity. Then, the system operated stable the rest of the operational period (days 30-94) despite the presence of organic matter in the wastewater and the high variability of nitrogen load and temperature during the operation. Nitrogen was autotrophically removed accomplishing the stringent discharge limits (10 mg TN/L) and nitrate concentrations in the effluent lower than 3 mg NO3--N/L. Both biomass concentration and granules size increased during the operational period indicating the growth of the biomass inside the reactor and therefore the potential treatment capacity.  
  Address [Pedrouso, Alba; Aiartza, Irati; Mosquera-Corral, Anuska; Val del Rio, Angeles] Univ Santiago de Compostela, Sch Engn, Dept Chem Engn, E-15705 Santiago De Compostela, Spain, Email: alba.pedrouso@usc.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1383-5866 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000431157200012 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 855  
Permanent link to this record
 

 
Author Campos, J.L.; del Rio, A.V.; Pedrouso, A.; Raux, P.; Giustinianovich, E.A.; Mosquera-Corral, A. pdf  doi
openurl 
  Title Granular biomass floatation: A simple kinetic/stoichiometric explanation Type
  Year 2017 Publication Chemical Engineering Journal Abbreviated Journal Chem. Eng. J.  
  Volume 311 Issue Pages (down) 63-71  
  Keywords Anaerobic; Anammox; Denitrification; Granule; Methane; Nitrogen  
  Abstract Floatation events are commonly observed in anammox, denitrifying and anaerobic granular systems mostly subjected to overloading conditions. Although several operational strategies have been proposed to avoid floatation of granular biomass, until now, there is no consensus about the conditions responsible for this phenomenon. In the present study, a simple explanation based on kinetic and stoichiometric principles defining the aforementioned processes is provided. The operational zones corresponding to evaluated parameters where risk of floatation exists are defined as a function of substrate concentration in the bulk liquid and the radius of the granule. Moreover, the possible control of biomass floatation by changing the operating temperature was analyzed. Defined operational zones and profiles fit data reported in literature for granular biomass floatation events. From the study the most influencing parameter on floatation occurrence has been identified as the substrate concentration in the bulk media. (C) 2016 Elsevier B.V. All rights reserved.  
  Address [Campos, J. L.; Raux, P.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Avda Padre Hurtado 750, Vina Del Mar, Chile, Email: jluis.campos@uai.cl  
  Corporate Author Thesis  
  Publisher Elsevier Science Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000392768200008 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 697  
Permanent link to this record
 

 
Author del Rio, A.V.; da Silva, T.; Martins, T.H.; Foresti, E.; Campos, J.L.; Mendez, R.; Mosquera-Corral, A. pdf  doi
openurl 
  Title Partial Nitritation-Anammox Granules: Short-Term Inhibitory Effects of Seven Metals on Anammox Activity Type
  Year 2017 Publication Water Air And Soil Pollution Abbreviated Journal Water Air Soil Pollut.  
  Volume 228 Issue 11 Pages (down) 9 pp  
  Keywords Ammonia oxidizing bacteria; Anammox; Granules; IC50; Nitrogen removal  
  Abstract The inhibitory effect of seven different metals on the specific anammox activity of granular biomass, collected from a single stage partial nitritation/anammox reactor, was evaluated. The concentration of each metal that led to a 50% inhibition concentration (IC50) was 19.3 mg Cu+2/L, 26.9 mg Cr+2/L, 45.6 mg Pb+2/L, 59.1 mg Zn+2/L, 69.2 mg Ni+2/L, 174.6 mg Cd+2/L, and 175.8 mg Mn+2/L. In experiments performed with granules mechanically disintegrated (flocculent-like sludge), the IC50 for Cd+2 corresponded to a concentration of 93.1 mg Cd+2/L. These results indicate that the granular structure might act as a physical barrier to protect anammox bacteria from toxics. Furthermore, the presence of an external layer of ammonia oxidizing bacteria seems to mitigate the inhibitory effect of the metals, as the values of IC50 obtained in this study for anammox activity were higher than those previously reported for anammox granules. Additionally, the results obtained confirmed that copper is one of the most inhibitory metals for anammox activity and revealed that chromium, scarcely studied yet, has a similar potential inhibitory effect.  
  Address [del Rio, Angeles Val; Mendez, Ramon; Mosquera-Corral, Anuska] Univ Santiago de Compostela, Inst Technol, Dept Chem Engn, E-15782 Santiago De Compostela, Spain, Email: mangeles.val@usc.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-6979 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000415958200002 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 790  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: