Records |
Author |
Bitar, N.; Goles, E.; Montealegre, P. |
Title |
COMPUTATIONAL COMPLEXITY OF BIASED DIFFUSION-LIMITED AGGREGATION |
Type |
|
Year |
2022 |
Publication |
Siam Journal On Discrete Mathematics |
Abbreviated Journal |
SIAM Discret. Math. |
Volume |
36 |
Issue |
1 |
Pages |
823-866 |
Keywords |
diffusion-limited aggregation; computational complexity; space complexity; NL-completeness; P-completeness |
Abstract |
Diffusion-Limited Aggregation (DLA) is a cluster-growth model that consists in a set of particles that are sequentially aggregated over a two-dimensional grid. In this paper, we introduce a biased version of the DLA model, in which particles are limited to move in a subset of possible directions. We denote by k-DLA the model where the particles move only in k possible directions. We study the biased DLA model from the perspective of Computational Complexity, defining two decision problems The first problem is Prediction, whose input is a site of the grid c and a sequence S of walks, representing the trajectories of a set of particles. The question is whether a particle stops at site c when sequence S is realized. The second problem is Realization, where the input is a set of positions of the grid, P. The question is whether there exists a sequence S that realizes P, i.e. all particles of S exactly occupy the positions in P. Our aim is to classify the Prediciton and Realization problems for the different versions of DLA. We first show that Prediction is P-Complete for 2-DLA (thus for 3-DLA). Later, we show that Prediction can be solved much more efficiently for 1-DLA. In fact, we show that in that case the problem is NL-Complete. With respect to Realization, we show that restricted to 2-DLA the problem is in P, while in the 1-DLA case, the problem is in L. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0895-4801 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000778502000037 |
Approved |
|
Call Number |
UAI @ alexi.delcanto @ |
Serial |
1558 |
Permanent link to this record |
|
|
|
Author |
Goles, E.; Montealegre, P. |
Title |
Computational complexity of threshold automata networks under different updating schemes |
Type |
|
Year |
2014 |
Publication |
Theoretical Computer Science |
Abbreviated Journal |
Theor. Comput. Sci. |
Volume |
559 |
Issue |
|
Pages |
3-19 |
Keywords |
Automata networks; Threshold functions; Computational complexity; Updating scheme; P-completeness; NC; NP-Hard |
Abstract |
Given a threshold automata network, as well as an updating scheme over its vertices, we study the computational complexity associated with the prediction of the future state of a vertex. More precisely, we analyze two classes of local functions: the majority and the AND-OR rule (vertices take the AND or the OR logic functions over the state of its neighborhoods). Depending on the updating scheme, we determine the complexity class (NC, P, NP, PSPACE) where the prediction problem belongs. (C) 2014 Elsevier B.V. All rights reserved. |
Address |
[Goles, Eric] Univ Adolfo Ibanez, Fac Ciencias & Tecnol, Santiago, Chile, Email: eric.chacc@uai.cl; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0304-3975 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000347025300002 |
Approved |
|
Call Number |
UAI @ eduardo.moreno @ |
Serial |
434 |
Permanent link to this record |
|
|
|
Author |
Goles, E.; Montealegre, P. |
Title |
The complexity of the majority rule on planar graphs |
Type |
|
Year |
2015 |
Publication |
Advances In Applied Mathematics |
Abbreviated Journal |
Adv. Appl. Math. |
Volume |
64 |
Issue |
|
Pages |
111-123 |
Keywords |
Automata networks; Computational complexity; Majority; P-Completeness; NC; Planar graph |
Abstract |
We study the complexity of the majority rule on planar automata networks. We reduce a special case of the Monotone Circuit Value Problem to the prediction problem of determining if a vertex of a planar graph will change its state when the network is updated with the majority rule. (C) 2014 Elsevier Inc. All rights reserved. |
Address |
[Goles, Eric] Univ Adolfo Ibanez, Fac Ciencias & Tecnol, Santiago, Chile, Email: eric.chacc@uai.cl; |
Corporate Author |
|
Thesis |
|
Publisher |
Academic Press Inc Elsevier Science |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0196-8858 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000348883400007 |
Approved |
|
Call Number |
UAI @ eduardo.moreno @ |
Serial |
445 |
Permanent link to this record |
|
|
|
Author |
Goles, E.; Montealegre, P. |
Title |
The complexity of the asynchronous prediction of the majority automata |
Type |
|
Year |
2020 |
Publication |
Information and Computation |
Abbreviated Journal |
Inf. Comput. |
Volume |
274 |
Issue |
SI |
Pages |
|
Keywords |
Majority automata; Cellular automata; Prediction problem; Asynchronous updating; Computational complexity; Parallel algorithms; Bootstrap percolation; NP-Completeness |
Abstract |
We consider the asynchronous prediction problem for some automaton as the one consisting in determining, given an initial configuration, if there exists a non-zero probability that some selected site changes its state, when the network is updated picking one site at a time uniformly at random. We show that for the majority automaton, the asynchronous prediction problem is in NC in the two-dimensional lattice with von Neumann neighborhood. Later, we show that in three or more dimensions the problem is NP-Complete. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0890-5401 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
|
Call Number |
UAI @ eduardo.moreno @ |
Serial |
1124 |
Permanent link to this record |