Home | << 1 2 3 >> |
![]() |
Records | |||||
---|---|---|---|---|---|
Author | Casassus, S.; Carcamo, M. | ||||
Title | Variable structure in the PDS 70 disc and uncertainties in radio-interferometric image restoration | Type | |||
Year | 2022 | Publication | Monthly Notices Of The Royal Astronomical Society | Abbreviated Journal | Mon. Not. Roy. Astron. Soc. |
Volume | 513 | Issue | 4 | Pages ![]() |
5790-5798 |
Keywords | techniques: interferometric; planets and satellites: formation; protoplanetary discs; stars: individual: PDS 70 | ||||
Abstract | The compact mm-wavelength signal in the central cavity of the PDS 70 disc, revealed by deep ALMA observations, is aligned with unresolved H alpha emission, and is thought to stem from a circumplanetary disc (CPD) around PDS 70c. We revisit the available ALMA data on PDS 70c with alternative imaging strategies, and with special attention to uncertainties and to the impact of the so-called 'JvM correction', which is thought to improve the dynamic range of restored images. We also propose a procedure for the alignment and joint imaging of multi-epoch visibility data. We find that the JvM correction exaggerates the peak signal-to-noise of the data, by up to a factor of 10. In the case of PDS 70, we recover the detection of PDS 70c from the 2019 July data, but only at 8 sigma. However, its non-detection in 2017 Dec. suggests that PDS 70c is variable by at least 42 per cent +/- 13 per cent over a 1.75 yr time-span, so similar to models of the H alpha variability. We also pick up fine structure in the inner disc, such that its peak is offset by similar to 0 ''.04 from the disc centre. The inner disc is variable too, which we tentatively ascribe to Keplerian rotation as well as intrinsic morphological changes. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0035-8711 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000804922200007 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1585 | ||
Permanent link to this record | |||||
Author | Kaye, L.; Vissapragada, S.; Gunther, M.N.; Aigrain, S.; Mikal-Evans, T.; Jensen, E.L.N.; Parviainen, H.; Pozuelos, F.J.; Abe, L.; Acton, J.S.; Agabi, A.; Alves, D.R.; Anderson, D.R.; Armstrong, D.J.; Barkaoui, K.; Barragan, O.; Benneke, B.; Boyd, P.T.; Brahm, R.; Bruni, I.; Bryant, E.M.; Burleigh, M.R.; Casewell, S.L.; Ciardi, D.; Cloutier, R.; Collins, K.A.; Collins, K.I.; Conti, D.M.; Crossfield, I.J.M.; Crouzet, N.; Daylan, T.; Dragomir, D.; Dransfield, G.; Fabrycky, D.; Fausnaugh, M.; Gan, T.J.; Gill, S.; Gillon, M.; Goad, M.R.; Gorjian, V.; Greklek-McKeon, M.; Guerrero, N.; Guillot, T.; Jehin, E.; Jenkins, J.S.; Lendl, M.; Kamler, J.; Kane, S.R.; Kielkopf, J.F.; Kunimoto, M.; Marie-Sainte, W.; McCormac, J.; Mekarnia, D.; Morales, F.Y.; Moyano, M.; Palle, E.; Parmentier, V; Relles, H.M.; Schmider, F.X.; Schwarz, R.P.; Seager, S.; Smith, A.M.S.; Tan, T.G.; Taylor, J.; Triaud, A.H.M.J.; Twicken, J.D.; Udry, S.; Vines, J.I.; Wang, G.; Wheatley, P.J.; Winn, J.N. | ||||
Title | Transit timings variations in the three-planet system: TOI-270 | Type | |||
Year | 2022 | Publication | Monthly Notices Of The Royal Astronomical Society | Abbreviated Journal | Mon. Not. Roy. Astron. Soc. |
Volume | 510 | Issue | 4 | Pages ![]() |
5464-5485 |
Keywords | planets and satellites: composition; planets and satellites: formation; planets and satellites: fundamental parameters | ||||
Abstract | We present ground- and space-based photometric observations of TOI-270 (L231-32), a system of three transiting planets consisting of one super-Earth and two sub-Neptunes discovered by TESS around a bright (K-mag = 8.25) M3V dwarf. The planets orbit near low-order mean-motion resonances (5:3 and 2:1) and are thus expected to exhibit large transit timing variations (TTVs). Following an extensive observing campaign using eight different observatories between 2018 and 2020, we now report a clear detection of TTVs for planets c and d, with amplitudes of similar to 10 min and a super-period of similar to 3 yr, as well as significantly refined estimates of the radii and mean orbital periods of all three planets. Dynamical modelling of the TTVs alone puts strong constraints on the mass ratio of planets c and d and on their eccentricities. When incorporating recently published constraints from radial velocity observations, we obtain masses of M-b = 1.48 +/- 0.18 M-circle plus, M-c = 6.20 +/- 0.31 M-circle plus, and M-d = 4.20 +/- 0.16 M-circle plus for planets b, c, and d, respectively. We also detect small but significant eccentricities for all three planets : e(b) = 0.0167 +/- 0.0084, e(c) = 0.0044 +/- 0.0006, and e(d) = 0.0066 +/- 0.0020. Our findings imply an Earth-like rocky composition for the inner planet, and Earth-like cores with an additional He/H2O atmosphere for the outer two. TOI-270 is now one of the best constrained systems of small transiting planets, and it remains an excellent target for atmospheric characterization. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0035-8711 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000764893900001 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1552 | ||
Permanent link to this record | |||||
Author | Nowak, G.; Palle, E.; Gandolfi, D.; Deeg, HJ.; Hirano, T.; Barragan, O.; Kuzuhara, M.; Dai, F.; Luque, R.; Persson, CM.; Fridlund, M.; Johnson, MC.; Korth, J.; Livingston, JH.; Grziwa, S.; Mathur, S.; Hatzes, AP.; Prieto-Arranz, J.; Nespral, D.; Hidalgo, D.; Hjorth, M.; Albrecht, S.; Van Eylen, V.; Lam, KWF.; Cochran, WD.; Esposito, M.; Csizmadia, S.; Guenther, EW.; Kabath, P.; Blay, P.; Brahm, R.; Jordan, A.; Espinoza, N.; Rojas, F.; Barris, NC.; Rodler, F.; Sobrino, RA.; Cabrera, J.; Carleo, I.; Chaushev, A.; de Leon, J.; Eigmuller, P.; Endl, M.; Erikson, A.; Fukui, A.; Georgieva, I.; Gonzalez-Cuesta, L.; Knudstrup, E.; Lund, MN.; Rodriguez, PM.; Murgas, F.; Narita, N.; Niraula, P.; Patzold, M.; Rauer, H.; Redfield, S.; Ribas, I.; Skarka, M.; Smith, AMS.; Subjak, J. | ||||
Title | K2-280 b – a low density warm sub-Saturn around a mildly evolved star | Type | |||
Year | 2020 | Publication | MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY | Abbreviated Journal | Mon. Not. Roy. Astron. Soc. |
Volume | 497 | Issue | 4 | Pages ![]() |
4423-4435 |
Keywords | techniques: photometric; techniques: radial velocities; techniques: spectroscopic; planets and satellites: detection; stars: individual: (EPIC 216494238, K2-280) | ||||
Abstract | We present an independent discovery and detailed characterization of K2-280 b, a transiting low density warm sub-Saturn in a 19.9-d moderately eccentric orbit (e = 0.35(-0.04)(+0.05)) from K2 campaign 7. A joint analysis of high precision HARPS, HARPS-N, and FIES radial velocity measurements and K2 photometric data indicates that K2-280 b has a radius of R-b = 7.50 +/- 0.44 R-circle plus and a mass of M-b = 37.1 +/- 5.6 M-circle plus, yielding a mean density of rho(b) = 0.48(-0.10)(+0.13) g cm(-3). The host star is a mildly evolved G7 star with an effective temperature of T-eff = 5500 +/- 100 K, a surface gravity of log g(star) = 4.21 +/- 0.05 (cgs), and an iron abundance of [Fe/H] = 0.33 +/- 0.08 dex, and with an inferred mass of M-star = 1.03 +/- 0.03 M-circle dot and a radius of R-star = 1.28 +/- 0.07 R-circle dot. We discuss the importance of K2-280 b for testing formation scenarios of sub-Saturn planets and the current sample of this intriguing group of planets that are absent in the Solar system. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0035-8711 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | ||||
Call Number | UAI @ alexi.delcanto @ | Serial | 1276 | ||
Permanent link to this record | |||||
Author | Salinas, H.; Pichara, K.; Brahm, R.; Perez-Galarce, F.; Mery, D. | ||||
Title | Distinguishing a planetary transit from false positives: a Transformer-based classification for planetary transit signals | Type | |||
Year | 2023 | Publication | Monthly Notices Of The Royal Astronomical Society | Abbreviated Journal | Mon. Not. Roy. Astron. Soc. |
Volume | 522 | Issue | 3 | Pages ![]() |
3201-3216 |
Keywords | methods: data analysis; planets and satellites: detection | ||||
Abstract | Current space-based missions, such as the Transiting Exoplanet Survey Satellite (TESS), provide a large database of light curves that must be analysed efficiently and systematically. In recent years, deep learning (DL) methods, particularly convolutional neural networks (CNN), have been used to classify transit signals of candidate exoplanets automatically. However, CNNs have some drawbacks; for example, they require many layers to capture dependencies on sequential data, such as light curves, making the network so large that it eventually becomes impractical. The self-attention mechanism is a DL technique that attempts to mimic the action of selectively focusing on some relevant things while ignoring others. Models, such as the Transformer architecture, were recently proposed for sequential data with successful results. Based on these successful models, we present a new architecture for the automatic classification of transit signals. Our proposed architecture is designed to capture the most significant features of a transit signal and stellar parameters through the self-attention mechanism. In addition to model prediction, we take advantage of attention map inspection, obtaining a more interpretable DL approach. Thus, we can identify the relevance of each element to differentiate a transit signal from false positives, simplifying the manual examination of candidates. We show that our architecture achieves competitive results concerning the CNNs applied for recognizing exoplanetary transit signals in data from the TESS telescope. Based on these results, we demonstrate that applying this state-of-the-art DL model to light curves can be a powerful technique for transit signal detection while offering a level of interpretability. | ||||
Address | |||||
Corporate Author | Data Observatory | Thesis | |||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0035-8711 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000981447300001 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1810 | ||
Permanent link to this record | |||||
Author | Sandford, E.; Espinoza, N.; Brahm, R.; Jordan, A. | ||||
Title | Estimation of singly transiting K2 planet periods with Gaia parallaxes | Type | |||
Year | 2019 | Publication | Monthly Notices Of The Royal Astronomical Society | Abbreviated Journal | Mon. Not. Roy. Astron. Soc. |
Volume | 489 | Issue | 3 | Pages ![]() |
3149-3161 |
Keywords | methods: data analysis; methods: statistical; planets and satellites: fundamental parameters; stars: planetary systems | ||||
Abstract | When a planet is only observed to transit once, direct measurement of its period is impossible. It is possible, however, to constrain the periods of single transiters, and this is desirable as they are likely to represent the cold and far extremes of the planet population observed by any particular survey. Improving the accuracy with which the period of single transiters can be constrained is therefore critical to enhance the long-period planet yield of surveys. Here, we combine Gaia parallaxes with stellar models and broad-band photometry to estimate the stellar densities of K2 planet host stars, then use that stellar density information to model individual planet transits and infer the posterior period distribution. We show that the densities we infer are reliable by comparing with densities derived through asteroseismology, and apply our method to 27 validation planets of known (directly measured) period, treating each transit as if it were the only one, as well as to 12 true single transiters. When we treat eccentricity as a free parameter, we achieve a fractional period uncertainty over the true single transits of 94(-58)(+87) per cent, and when we fix e = 0, we achieve fractional period uncertainty 15(-6)(+30) per cent, a roughly threefold improvement over typical period uncertainties of previous studies. | ||||
Address | [Sandford, Emily] Columbia Univ, Dept Astron, 550 W 120th St, New York, NY 10027 USA, Email: esandford@astro.columbia.edu | ||||
Corporate Author | Thesis | ||||
Publisher | Oxford Univ Press | Place of Publication | Editor | ||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0035-8711 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000489288600015 | Approved | |||
Call Number | UAI @ eduardo.moreno @ | Serial | 1088 | ||
Permanent link to this record | |||||
Author | Espinoza, N.; Brahm, R.; Henning, T.; Jordan, A.; Dorn, C.; Rojas, F.; Sarkis, P.; Kossakowski, D.; Schlecker, M.; Diaz, M.R.; Jenkins, J.S.; Aguilera-Gomez, C.; Jenkins, J.M.; Twicken, J.D.; Collins, K.A.; Lissauer, J.; Armstrong, D.J.; Adibekyan, V.; Barrado, D.; Barros, S.C.C.; Battley, M.; Bayliss, D.; Bouchy, F.; Bryant, E.M.; Cooke, B.F.; Demangeon, O.D.S.; Dumusque, X.; Figueira, P.; Giles, H.; Lillo-Box, J.; Lovis, C.; Nielsen, L.D.; Pepe, F.; Pollaco, D.; Santos, N.C.; Sousa, S.G.; Udry, S.; Wheatley, P.J.; Turner, O.; Marmier, M.; Segransan, D.; Ricker, G.; Latham, D.; Seager, S.; Winn, J.N.; Kielkopf, J.F.; Hart, R.; Wingham, G.; Jensen, E.L.N.; Helminiak, K.G.; Tokovinin, A.; Briceno, C.; Ziegler, C.; Law, N.M.; Mann, A.W.; Daylan, T.; Doty, J.P.; Guerrero, N.; Boyd, P.; Crossfield, I.; Morris, R.L.; Henze, C.E.; Chacon, A.D. | ||||
Title | HD 213885b: a transiting 1-d-period super-Earth with an Earth-like composition around a bright (V=7.9) star unveiled by TESS | Type | |||
Year | 2020 | Publication | Monthly Notices Of The Royal Astronomical Society | Abbreviated Journal | Mon. Not. Roy. Astron. Soc. |
Volume | 491 | Issue | 2 | Pages ![]() |
2982-2999 |
Keywords | techniques: photometric; techniques: radial velocities; planets and satellites: detection; planets and satellites: fundamental parameters; planets and satellites: individual: TOI-141, TIC 403224672, HD213885 | ||||
Abstract | We report the discovery of the 1.008-d, ultrashort period (USP) super-EarthHD213885b (TOI141b) orbiting the bright (V= 7.9) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS, and CORALIE radial velocities, we measure a precise mass of 8.8 +/- 0.6M. for this 1.74 +/- 0.05 R. exoplanet, which provides enough information to constrain its bulk composition – similar to Earth's but enriched in iron. The radius, mass, and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial velocities reveal an additional 4.78-d signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c, whoseminimum mass of 19.9 +/- 1.4M. makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an USP transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed. | ||||
Address | [Espinoza, Nestor] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA, Email: nespinoza@stsci.edu | ||||
Corporate Author | Thesis | ||||
Publisher | Oxford Univ Press | Place of Publication | Editor | ||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0035-8711 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000512302100105 | Approved | |||
Call Number | UAI @ eduardo.moreno @ | Serial | 1106 | ||
Permanent link to this record | |||||
Author | Osborn, A.; Armstrong, D.J.; Cale, B.; Brahm, R.; Wittenmyer, R.A.; Dai, F.; Crossfield, I.J.M.; Bryant, E.M.; Adibekyan, V.; Cloutier, R.; Collins, K.A.; Mena, E.D.; Fridlund, M.; Hellier, C.; Howell, S.B.; King, G.W.; Lillo-Box, J.; Otegi, J.; Sousa, S.; Stassun, K.G.; Matthews, E.C.; Ziegler, C.; Ricker, G.; Vanderspek, R.; Latham, D.W.; Seager, S.; Winn, J.N.; Jenkins, J.M.; Acton, J.S.; Addison, B.C.; Anderson, D.R.; Ballard, S.; Barrado, D.; Barros, S.C.C.; Batalha, N.; Bayliss, D.; Barclay, T.; Benneke, B.; Berberian, J.; Bouchy, F.; Bowler, B.P.; Briceno, C.; Burke, C.J.; Burleigh, M.R.; Casewell, S.L.; Ciardi, D.; Collins, K.I.; Cooke, B.F.; Demangeon, O.D.S.; Diaz, R.F.; Dorn, C.; Dragomir, D.; Dressing, C.; Dumusque, X.; Espinoza, N.; Figueira, P.; Fulton, B.; Furlan, E.; Gaidos, E.; Geneser, C.; Gill, S.; Goad, M.R.; Gonzales, E.J.; Gorjian, V.; Gunther, M.N.; Helled, R.; Henderson, B.A.; Henning, T.; Hogan, A.; Hojjatpanah, S.; Horner, J.; Howard, A.W.; Hoyer, S.; Huber, D.; Isaacson, H.; Jenkins, J.S.; Jensen, E.L.N.; Jordan, A.; Kane, S.R.; Kidwell, R.C.; Kielkopf, J.; Law, N.; Lendl, M.; Lund, M.; Matson, R.A.; Mann, A.W.; McCormac, J.; Mengel, M.W.; Morales, F.Y.; Nielsen, L.D.; Okumura, J.; Osborn, H.P.; Petigura, E.A.; Plavchan, P.; Pollacco, D.; Quintana, E.V.; Raynard, L.; Robertson, P.; Rose, M.E.; Roy, A.; Reefe, M.; Santerne, A.; Santos, N.C.; Sarkis, P.; Schlieder, J.; Schwarz, R.P.; Scott, N.J.; Shporer, A.; Smith, A.M.S.; Stibbard, C.; Stockdale, C.; Strom, P.A.; Twicken, J.D.; Tan, T.G.; Tanner, A.; Teske, J.; Tilbrook, R.H.; Tinney, C.G.; Udry, S.; Villasenor, J.N.; Vines, J.I.; Wang, S.X.; Weiss, L.M.; West, R.G.; Wheatley, P.J.; Wright, D.J.; Zhang, H.; Zohrabi, F. | ||||
Title | TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet | Type | |||
Year | 2021 | Publication | Monthly Notices Of The Royal Astronomical Society | Abbreviated Journal | Mon. Not. Roy. Astron. Soc. |
Volume | 507 | Issue | 2 | Pages ![]() |
2782-2803 |
Keywords | planets and satellites: detection; planets and satellites: fundamental parameters; planets and satellites: individual: (TOI-431, TIC 31374837) | ||||
Abstract | We present the bright (V-mag = 9.12), multiplanet system TOI-431, characterized with photometry and radial velocities (RVs). We estimate the stellar rotation period to be 30.5 +/- 0.7 d using archival photometry and RVs. Transiting Exoplanet Survey Satellite (TESS) objects of Interest (TOI)-431b is a super-Earth with a period of 0.49 d, a radius of 1.28 +/- 0.04 R-circle plus, a mass of 3.07 +/- 0.35 M-circle plus, and a density of 8.0 +/- 1.0 g cm(-3); TOI-431 d is a sub-Neptune with a period of 12.46 d, a radius of 3.29 +/- 0.09 R-circle plus, a mass of M-circle plus, and a density of 1.36 +/- 0.25 g cm(-3). We find a third planet, TOI-431c, in the High Accuracy Radial velocity Planet Searcher RV data, but it is not seen to transit in the TESS light curves. It has an Msin i of M-circle plus, and a period of 4.85 d. TOI-431d likely has an extended atmosphere and is one of the most well-suited TESS discoveries for atmospheric characterization, while the super-Earth TOI-431b may be a stripped core. These planets straddle the radius gap, presenting an interesting case-study for atmospheric evolution, and TOI-431b is a prime TESS discovery for the study of rocky planet phase curves. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0035-8711 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000697380800082 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1485 | ||
Permanent link to this record | |||||
Author | Roman, M.T. | ||||
Title | Mid-Infrared Observations of the Giant Planets | Type | |||
Year | 2023 | Publication | Remote Sensing | Abbreviated Journal | Remote Sensing |
Volume | 15 | Issue | 7 | Pages ![]() |
1811 |
Keywords | giant planets; atmospheres; dynamics; chemistry | ||||
Abstract | The mid-infrared spectral region provides a unique window into the atmospheric temperature, chemistry, and dynamics of the giant planets. From more than a century of mid-infrared remote sensing, progressively clearer pictures of the composition and thermal structure of these atmospheres have emerged, along with a greater insight into the processes that shape them. Our knowledge of Jupiter and Saturn has benefitted from their proximity and relatively warm temperatures, while the details of colder and more distant Uranus and Neptune are limited as these planets remain challenging targets. As the timeline of observations continues to grow, an understanding of the temporal and seasonal variability of the giant planets is beginning to develop with promising new observations on the horizon. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2072-4292 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000969639700001 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1791 | ||
Permanent link to this record | |||||
Author | Jenkins, J.S.; Diaz, M.R.; Kurtovic, N.T.; Espinoza, N.; Vines, J.I.; Rojas, P.A.P.; Brahm, R.; Torres, P.; Cortes-Zuleta, P.; Soto, M.G.; Lopez, E.D.; King, G.W.; Wheatley, P.J.; Winn, J.N.; Ciardi, D.R.; Ricker, G.; Vanderspek, R.; Latham, D.W.; Seager, S.; Jenkins, J.M.; Beichman, C.A.; Bieryla, A.; Burke, C.J.; Christiansen, J.L.; Henze, C.E.; Klaus, T.C.; McCauliff, S.; Mori, M.; Narita, N.; Nishiumi, T.; Tamura, M.; de Leon, J.P.; Quinn, S.N.; Villasenor, J.N.; Vezie, M.; Lissauer, J.J.; Collins, K.A.; Collins, K.I.; Isopi, G.; Mallia, F.; Ercolino, A.; Petrovich, C.; Jordan, A.; Acton, J.S.; Armstrong, D.J.; Bayliss, D.; Bouchy, F.; Belardi, C.; Bryant, E.M.; Burleigh, M.R.; Cabrera, J.; Casewell, S.L.; Chaushev, A.; Cooke, B.F.; Eigmuller, P.; Erikson, A.; Foxell, E.; Gansicke, B.T.; Gill, S.; Gillen, E.; Gunther, M.N.; Goad, M.R.; Hooton, M.J.; Jackman, J.A.G.; Louden, T.; McCormac, J.; Moyano, M.; Nielsen, L.D.; Pollacco, D.; Queloz, D.; Rauer, H.; Raynard, L.; Smith, A.M.S.; Tilbrook, R.H.; Titz-Weider, R.; Turner, O.; Udry, S.; Walker, S.R.; Watson, C.A.; West, R.G.; Palle, E.; Ziegler, C.; Law, N.; Mann, A.W. | ||||
Title | An ultrahot Neptune in the Neptune desert | Type | |||
Year | 2020 | Publication | Nature Astronomy | Abbreviated Journal | Nat. Astron. |
Volume | 4 | Issue | 12 | Pages ![]() |
1148–1157 |
Keywords | PLANETS; ATMOSPHERE; EXOPLANETS; ALGORITHM; EFFICIENT; DWARFS; STARS; TOOL | ||||
Abstract | About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet(1,2). All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R-circle plus), or apparently rocky planets smaller than 2 R-circle plus. Such lack of planets of intermediate size (the `hot Neptune desert') has been interpreted as the inability of low-mass planets to retain any hydrogen/ helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R-circle plus and a mass of 29 M-circle plus, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite(3) revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet's mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0(-2.9)(+2.7) % of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this `ultrahot Neptune' managed to retain such an envelope. Follow-up observations of the planet's atmosphere to better understand its origin and physical nature will be facilitated by the star's brightness (V-mag = 9.8). | ||||
Address | [Jenkins, James S.; Diaz, Matias R.; Kurtovic, Nicolas T.; Vines, Jose I.; Rojas, Pablo A. Pena; Cortes-Zuleta, Pia] Univ Chile, Dept Astron, Las Condes, Chile, Email: jjenkins@das.uchile.cl | ||||
Corporate Author | Thesis | ||||
Publisher | Nature Research | Place of Publication | Editor | ||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2397-3366 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000571722300001 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1240 | ||
Permanent link to this record | |||||
Author | Sha, L.Z.; Vanderburg, A.M.; Huang, C.X.; Armstrong, D.J.; Brahm, R.; Giacalone, S.; Wood, M.L.; Collins, K.A.; Nielsen, L.D.; Hobson, M.J.; Ziegler, C.; Howell, S.B.; Torres-Miranda, P.; Mann, A.W.; Zhou, G.R.; Delgado-Mena, E.; Rojas, F.I.; Abe, L.; Trifonov, T.; Adibekyan, V.; Sousa, S.G.; Fajardo-Acosta, S.B.; Guillot, T.; Howard, S.; Littlefield, C.; Hawthorn, F.; Schmider, F.X.; Eberhardt, J.; Tan, T.G.; Osborn, A.; Schwarz, R.P.; Strom, P.; Jordan, A.; Wang, G.V.; Henning, T.; Massey, B.; Law, N.; Stockdale, C.; Furlan, E.; Srdoc, G.; Wheatley, P.J.; Navascues, D.B.; Lissauer, J.J.; Stassun, K.G.; Ricker, G.R.; Vanderspek, R.K.; Latham, D.W.; Winn, J.N.; Seager, S.; Jenkins, J.M.; Barclay, T.; Bouma, L.G.; Christiansen, J.L.; Guerrero, N.; Rose, M.E. | ||||
Title | TESS spots a mini-neptune interior to a hot saturn in the TOI-2000 system | Type | |||
Year | 2023 | Publication | Monthly Notices Of The Royal Astronomical Society | Abbreviated Journal | Mon. Not. Roy. Astron. Soc. |
Volume | 524 | Issue | 1 | Pages ![]() |
1113-1138 |
Keywords | techniques: photometric; techniques: radial velocities; planets and satellites: detection; planets and satellites: formation; planets and satellites: gaseous planets; stars: individual: TOI-2000 (TIC 371188886) | ||||
Abstract | Hot jupiters (P < 10 d, M > 60 M.) are almost always found alone around their stars, but four out of hundreds known have inner companion planets. These rare companions allow us to constrain the hot jupiter's formation history by ruling out high-eccentricity tidal migration. Less is known about inner companions to hot Saturn-mass planets. We report here the discovery of the TOI-2000 system, which features a hot Saturn-mass planet with a smaller inner companion. The mini-neptune TOI-2000 b (2.70 +/- 0.15 R-circle plus, 11.0 +/- 2.4 M.) is in a 3.10-d orbit, and the hot saturn TOI-2000 c (8.14(+0.31) (-0.30) R-circle plus, 81.7(-4.6)(+4.7) M.) is in a 9.13-d orbit. Both planets transit their host star TOI-2000 (TIC 371188886, V = 10.98, TESS magnitude = 10.36), a metal-rich ([Fe/H] = 0.439 (+0.041)(-0.043)) G dwarf 173 pc away. TESS observed the two planets in sectors 9-11 and 36-38, and we followed up with groundbased photometry, spectroscopy, and speckle imaging. Radial velocities from CHIRON, FEROS, and HARPS allowed us to confirm both planets by direct mass measurement. In addition, we demonstrate constraining planetary and stellar parameters with MIST stellar evolutionary tracks through Hamiltonian Monte Carlo under the PYMC framework, achieving higher sampling efficiency and shorter run time compared to traditional Markov chain Monte Carlo. Having the brightest host star in the V band among similar systems, TOI-2000 b and c are superb candidates for atmospheric characterization by the JWST, which can potentially distinguish whether they formed together or TOI-2000 c swept along material during migration to form TOI-2000 b. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0035-8711 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:001038648500002 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1873 | ||
Permanent link to this record | |||||
Author | Kossakowski, D.; Espinoza, N.; Brahm, R.; Jordan, A.; Henning, T.; Rojas, F.; Kurster, M.; Sarkis, P.; Schlecker, M.; Pozuelos, F.J.; Barkaoui, K.; Jehin, E.; Gillon, M.; Matthews, E.; Horch, E.P.; Ciardi, D.R.; Crossfield, I.J.M.; Gonzales, E.; Howell, S.B.; Matson, R.; Schlieder, J.; Jenkins, J.; Ricker, G.; Seager, S.; Winn, J.N.; Li, J.; Rose, M.E.; Smith, J.C.; Dynes, S.; Morgan, E.; Villasenor, J.N.; Charbonneau, D.; Jaffe, T.; Yu, L.; Bakos, G.; Bhatti, W.; Bouchy, F.; Collins, K.A.; Collins, K.I.; Csubry, Z.; Evans, P.; Jensen, E.L.N.; Lovis, C.; Marmier, M.; Nielsen, L.D.; Osip, D.; Pepe, F.; Relles, H.M.; Segransan, D.; Shporer, A.; Stockdale, C.; Suc, V.; Turner, O.; Udry, S. | ||||
Title | TOI-150b and TOI-163b: two transiting hot Jupiters, one eccentric and one inflated, revealed by TESS near and at the edge of the JWST CVZ | Type | |||
Year | 2019 | Publication | Monthly Notices Of The Royal Astronomical Society | Abbreviated Journal | Mon. Not. Roy. Astron. Soc. |
Volume | 490 | Issue | 1 | Pages ![]() |
1094-1110 |
Keywords | techniques: photometric; planets and satellites: detection; stars: individual: HD271181; stars: individual: TIC 179317684; stars: individual: TIC 271893367; stars: individual: TYC9191-519-1 | ||||
Abstract | We present the discovery of TYC9191-519-1b (TOI-150b, TIC 271893367) and HD271181b (TOI-163b, TIC 179317684), two hot Jupiters initially detected using 30-min cadence Transiting Exoplanet Survey Satellite (TESS) photometry from Sector 1 and thoroughly characterized through follow-up photometry (CHAT, Hazelwood, LCO/CTIO, El Sauce, TRAPPIST-S), high-resolution spectroscopy (FEROS, CORALIE), and speckle imaging (Gemini/DSSI), confirming the planetary nature of the two signals. A simultaneous joint fit of photometry and radial velocity using a new fitting package JULIET reveals that TOI-150b is a 1.254 +/- 0.016 R-J, massive (2.61(-0.12)(+0.19) M-J) hot Jupiter in a 5.857-d orbit, while TOI-163b is an inflated (R-P = 1.478(-0.029)(+0.022) R-J, M-P = 1.219 +/- 0.11 M-J) hot Jupiter on a P = 4.231-d orbit; both planets orbit F-type stars. A particularly interesting result is that TOI-150b shows an eccentric orbit (e = 0.262(-0.037)(+0.045)), which is quite uncommon among hot Jupiters. We estimate that this is consistent, however, with the circularization time-scale, which is slightly larger than the age of the system. These two hot Jupiters are both prime candidates for further characterization – in particular, both are excellent candidates for determining spin-orbit alignments via the Rossiter-McLaughlin (RM) effect and for characterizing atmospheric thermal structures using secondary eclipse observations considering they are both located closely to the James Webb Space Telescope (JWST) Continuous Viewing Zone (CVZ). | ||||
Address | [Kossakowski, Diana; Espinoza, Nestor; Henning, Thomas; Kuerster, Martin; Sarkis, Paula; Schlecker, Martin] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany, Email: kossakowski@mpia.dc | ||||
Corporate Author | Thesis | ||||
Publisher | Oxford Univ Press | Place of Publication | Editor | ||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0035-8711 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000496922300078 | Approved | |||
Call Number | UAI @ eduardo.moreno @ | Serial | 1076 | ||
Permanent link to this record | |||||
Author | Lai, D.; Munoz, D.J. | ||||
Title | Circumbinary Accretion: From Binary Stars to Massive Binary Black Holes | Type | |||
Year | 2023 | Publication | Annual Review of Astronomy and Astrophysics | Abbreviated Journal | Annu. Rev. Astron. Astrophys. |
Volume | 61 | Issue | Pages ![]() |
517-560 | |
Keywords | stars; binaries; star formation; black hole physics; supermassive black holes; accretion disks; protoplanetary disks; exoplanets; hydrodynamics | ||||
Abstract | We review recent works on the dynamics of circumbinary accretion, including time variability, angular momentum transfer between the disk and the binary, and the secular evolution of accreting binaries. These dynamics impact stellar binary formation/evolution, circumbinary planet formation/migration, and the evolution of (super)massive black hole binaries. We discuss the dynamics and evolution of inclined/warped circumbinary disks and connect with observations of protoplanetary disks. A special kind of circumbinary accretion involves binaries embedded in big disks, which may contribute to the mergers of stellar-mass black holes in AGN disks. Highlights include the following: Circumbinary accretion is highly variable, being modulated at P-b (the binary period) or similar to 5P(b), depending on the binary eccentricity e(b) and mass ratio q(b). The inner region of the circumbinary disk can develop coherent eccentric structure, which may modulate the accretion and affect the physical processes (e.g., planet migration) taking place in the disk. Over long timescales, circumbinary accretion steers binaries toward equal masses, and it does not always lead to binary orbital decay. The secular orbital evolution depends on the binary parameters (e(b) and q(b)) and on the thermodynamic properties of the accreting gas. A misaligned disk around a low-eccentricity binary tends to evolve toward coplanarity due to viscous dissipation. But when e(b) is significant, the disk can evolve toward “polar alignment,” with the disk plane perpendicular to the binary plane. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1545-4282 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:001051692000013 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1864 | ||
Permanent link to this record | |||||
Author | Sedaghati, E.; MacDonald, R.J.; Casasayas-Barris, N.; Hoeijmakers, H.J.; Boffin, H.M.J.; Rodler, F.; Brahm, R.; Jones, M.; Sanchez-Lopez, A.; Carleo, I.; Figueira, P.; Mehner, A.; Lopez-Puertas, M. | ||||
Title | A spectral survey of WASP-19b with ESPRESSO | Type | |||
Year | 2021 | Publication | Monthly Notices Of The Royal Astronomical Society | Abbreviated Journal | Mon. Not. Roy. Astron. Soc. |
Volume | 505 | Issue | 1 | Pages ![]() |
435-458 |
Keywords | methods: data analysis; techniques: spectroscopic; planets and satellites: atmospheres; planets and satellites: individual: WASP-19b; stars: activity; stars: individual: WASP-19 | ||||
Abstract | High-resolution precision spectroscopy provides a multitude of robust techniques for probing exoplanetary atmospheres. We present multiple VLT/ESPRESSO transit observations of the hot-Jupiter exoplanet WASP-19b with previously published but disputed atmospheric features from low resolution studies. Through spectral synthesis and modelling of the Rossiter-McLaughlin (RM) effect we calculate stellar, orbital and physical parameters for the system. From narrow-band spectroscopy we do not detect any of Hi, Fei, Mgi, Cai, Nai, and Ki neutral species, placing upper limits on their line contrasts. Through cross-correlation analyses with atmospheric models, we do not detect Fei and place a 3 sigma upper limit of on its mass fraction, from injection and retrieval. We show the inability to detect the presence of H2O for known abundances, owing to lack of strong absorption bands, as well as relatively low S/N ratio. We detect a barely significant peak (3.02 +/- 0.15 sigma) in the cross-correlation map for TiO, consistent with the sub-solar abundance previously reported. This is merely a hint for the presence of TiO and does not constitute a confirmation. However, we do confirm the presence of previously observed enhanced scattering towards blue wavelengths, through chromatic RM measurements, pointing to a hazy atmosphere. We finally present a reanalysis of low-resolution transmission spectra of this exoplanet, concluding that unocculted starspots alone cannot explain previously detected features. Our reanalysis of the FORS2 spectra of WASP-19b finds a similar to 100x sub-solar TiO abundance, precisely constrained to , consistent with the TiO hint from ESPRESSO. We present plausible paths to reconciliation with other seemingly contradicting results. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0035-8711 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000671453100031 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1438 | ||
Permanent link to this record | |||||
Author | Christie, D.A.; E.K.H.; Innes, H.; Noti, P.A.; Charnay, B.; Fauchez, T.J.; Mayne, N.J.; Deitrick, R.; Ding, F.; Greco, J.J.; Hammond, M.; Malsky, I.; Mandell, A.; Rauscher, E.; Roman, M.T.; Sergeev, D.E.; Sohl, L.; Steinrueck, M.E.; Turbet, M.; Wolf, E.T.; Zamyatina, M.; Carone, L. | ||||
Title | CAMEMBERT: A Mini-Neptunes General Circulation Model Intercomparison, Protocol Version 1.0.A CUISINES Model Intercomparison Project | Type | |||
Year | 2022 | Publication | Planetary Science Journal | Abbreviated Journal | Planet. Sci. |
Volume | 3 | Issue | 11 | Pages ![]() |
261 |
Keywords | ATMOSPHERIC CIRCULATION; DYNAMICAL CORES; HABITABLE-ZONE; TEMPERATE; PLANETS; DESIGN; CLOUDS; K2-18B; SUITE; HARPS | ||||
Abstract | With an increased focus on the observing and modeling of mini-Neptunes, there comes a need to better understand the tools we use to model their atmospheres. In this Paper, we present the protocol for the Comparing Atmospheric Models of Extrasolar Mini-Neptunes Building and Envisioning Retrievals and Transits, CAMEMBERT, project, an intercomparison of general circulation models (GCMs) used by the exoplanetary science community to simulate the atmospheres of mini-Neptunes. We focus on two targets well studied both observationally and theoretically with planned JWST cycle 1 observations: the warm GJ 1214b and the cooler K2-18b. For each target, we consider a temperature-forced case, a clear sky dual-gray radiative transfer case, and a clear sky multiband radiative transfer case, covering a range of complexities and configurations where we know differences exist between GCMs in the literature. This Paper presents all the details necessary to participate in the intercomparison, with the intention of presenting the results in future papers. Currently, there are eight GCMs participating (ExoCAM, Exo-FMS, FMS PCM, Generic PCM, MITgcm, RM-GCM, THOR, and the Unified Model), and membership in the project remains open. Those interested in participating are invited to contact the authors. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2632-3338 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000912975100001 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1729 | ||
Permanent link to this record | |||||
Author | Hobson, MJ.; Brahm, R.; Jordan, A .; Espinoza, N.; Kossakowski, D.; Henning, T.; Rojas, F.; Schlecker, M.; Sarkis, P.; Trifonov, T.; Thorngren, D.; Binnenfeld, A.; Shahaf, S.; Zucker, S.; Ricker, GR.; Latham, DW.; Seager, S.; Winn, JN.; Jenkins, JM.; Addison, B.; Bouchy, F.; Bowler, BP.; Briegal, JT.; Bryant, EM.; Collins, KA.; Daylan, T.; Grieves, N.; Horner, J.; Huang, CL.; Kane, SR.; Kielkopf, J.; McLean, B.; Mengel, MW.; Nielsen, LD.; Okumura, J.; Jones, M.; Plavchan, P.; Shporer, A.; Smith, AMS.; Tilbrook, R.; Tinney, CG.; Twicken, JD.; Udry, S.; Unger, N.; West, R.; Wittenmyer, RA.; Wohler, B.; Torres, P.; Wright, DJ. | ||||
Title | A Transiting Warm Giant Planet around the Young Active Star TOI-201 | Type | |||
Year | 2021 | Publication | Astronomical Journal | Abbreviated Journal | Astron. J. |
Volume | 161 | Issue | 5 | Pages ![]() |
235 |
Keywords | MAGNETIC ACTIVITY; ERROR-CORRECTION; EXOPLANETS; ROTATION; TEMPERATURES; EVOLUTION; VELOCITY; SYSTEMS; TOOL | ||||
Abstract | We present the confirmation of the eccentric warm giant planet TOI-201 b, first identified as a candidate in Transiting Exoplanet Survey Satellite photometry (Sectors 1-8, 10-13, and 27-28) and confirmed using groundbased photometry from Next Generation Transit Survey and radial velocities from FEROS, HARPS, CORALIE, and MINERVA-Australis. TOI-201 b orbits a young (0.87(-0.49)(+0.46)) and bright (V = 9.07 mag) F-type star with a 52.9781 day period. The planet has a mass of 0.42(-0.03)(+0.05) M-J, a radius of 1.008(-0.015)(+0.012) R-J, and an orbital eccentricity of 0.28(-0.09)(+0.06); it appears to still be undergoing fairly rapid cooling, as expected given the youth of the host star. The star also shows long-term variability in both the radial velocities and several activity indicators, which we attribute to stellar activity. The discovery and characterization of warm giant planets such as TOI-201 b are important for constraining formation and evolution theories for giant planets. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0004-6256 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000645139000001 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1381 | ||
Permanent link to this record | |||||
Author | Clark, J.T.; Addison, B.C.; Okumura, J.; Vach, S.; Errico, A.; Heitzmann, A.; Rodriguez, J.E.; Wright, D.J.; Clerte, M.; Brown, C.J.; Fetherolf, T.; Wittenmyer, R.A.; Plavchan, P.; Kane, S.R.; Horner, J.; Kielkopf, J.F.; Shporer, A.; Tinney, C.G.; Hui-Gen, L.; Ballard, S.; Bowler, B.P.; Mengel, M.W.; Zhou, G.; Lee, A.S.; David, A.; Heim, J.; Lee, M.E.; Sevilla, V.; Zafar, N.E.; Hinkel, N.R.; Allen, B.E.; Bayliss, D.; Berberyan, A.; Berlind, P.; Bieryla, A.; Bouchy, F.; Brahm, R.; Bryant, E.M.; Christiansen, J.L.; Ciardi, D.R..; Ciardi, KN.; Collins, K.A.; Dallant, J.; Davis, A.B.; Dfaz, M.R.; Dressing, C.D.; Esquerdo, G.A.; Harre, J.V.; Howell, S.B.; Jenkins, J.M.; Jensen, E.L.N.; Jones, M.I.; Jordan, A.; Latham, D.W.; Lund, M.B.; McCormac, J.; Nielsen, L.D.; Otegi, J.; Quinn, S.N.; Radford, D.J.; Ricker, G.R.; Schwarz, R.P.; Seager, S.; Smith, A.M.S.; Stockdale, C.; Tan, T.G.; Udry, S.; Vanderspek, R.; Gnnther, M.N.; Wang, S.H.; Wingham, G.; Winn, J.N. | ||||
Title | Spinning up a Daze: TESS Uncovers a Hot Jupiter Orbiting the Rapid Rotator TOI-778 | Type | |||
Year | 2023 | Publication | Astronomical Journal | Abbreviated Journal | Astron. J. |
Volume | 165 | Issue | 5 | Pages ![]() |
207 |
Keywords | ANGLO-AUSTRALIAN PLANET; TRANSITING HOT; ADAPTIVE OPTICS; GIANT PLANETS; DETERMINISTIC MODEL; OCCURRENCE RATES; 51 PEGASI; STARS; KEPLER; MASS | ||||
Abstract | NASA's Transiting Exoplanet Survey Satellite (TESS) mission has been uncovering a growing number of exoplanets orbiting nearby, bright stars. Most exoplanets that have been discovered by TESS orbit narrow-line, slow-rotating stars, facilitating the confirmation and mass determination of these worlds. We present the discovery of a hot Jupiter orbiting a rapidly rotating (v sin (i) = 35.1 +/- 1.0 km s(-1) early F3V-dwarf, HD 115447 (TOI-778). The transit signal taken from Sectors 10 and 37 of TESS's initial detection of the exoplanet is combined with follow-up ground-based photometry and velocity measurements taken from MINERVA-Australis, TRES, CORALIE, and CHIRON to confirm and characterize TOI-778 b. A joint analysis of the light curves and the radial velocity measurements yields a mass, a radius, and an orbital period for TOI-778 b of 2.76(-0.23)(+0.24) M-J, 1.370 +/- 0.043 R-J, and similar to 4.63 days, respectively. The planet orbits a bright (V = 9.1 mag) F3-dwarf with M = 1.40 +/- 0.05 M-circle dot, R = 1.70 +/- 0.05 R-circle dot, and log g = 4.05 +/- 0.17. We observed a spectroscopic transit of TOI-778 b, which allowed us to derive a sky-projected spin-orbit angle of 18 degrees +/- 11 degrees, consistent with an aligned planetary system. This discovery demonstrates the capability of smaller-aperture telescopes such as MINERVA-Australis to detect the radial velocity signals produced by planets orbiting broad-line, rapidly rotating stars. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0004-6256 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000982918300001 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1836 | ||
Permanent link to this record | |||||
Author | Eberhardt, J.; Trifonov, T.; Kurster, M.; Stock, S.; Henning, T.; Wollbold, A.; Reffert, S.; Lee, M.H.; Zechmeister, M.; Rodler, F.; Zakhozhay, O.; Heeren, P.; Gandolfi, D.; Barragan, O.; Pinto, M.T.; Wolthoff, V.; Sarkis, P.; Brems, S.S. | ||||
Title | Dynamical Architecture of the HD 107148 Planetary System | Type | |||
Year | 2022 | Publication | Astronomical Journal | Abbreviated Journal | Astron. J. |
Volume | 163 | Issue | 5 | Pages ![]() |
198 |
Keywords | LOMB-SCARGLE PERIODOGRAM; EXTRA-SOLAR PLANETS; RADIAL-VELOCITIES; ORBITAL SOLUTIONS; CARMENES SEARCH; M DWARFS; COMPANIONS; PRECISION; STARS; EXOPLANETS | ||||
Abstract | We present an independent Doppler validation and dynamical orbital analysis of the two-planet system HD 107148, which was recently announced in Rosenthal et al. Our detailed analyses are based on literature HIRES data and newly obtained HARPS and CARMENES radial-velocity (RV) measurements as part of our survey in search for additional planets around single-planet systems. We perform a periodogram analysis of the available HIRES and HARPS precise RVs and stellar activity indicators. We do not find any apparent correlation between the RV measurements and the stellar activity indicators, thus linking the two strong periodicities to a moderately compact multiplanet system. We carry out orbital fitting analysis by testing various one- and two-planet orbital configurations and studying the posterior probability distribution of the fitted parameters. Our results solidify the existence of a Saturn-mass planet (HD 107148b, discovered first) with a period of P (b) similar to 77.2 days and a second, eccentric (e (c) similar to 0.4), Neptune-mass exoplanet (HD 107148c) with an orbital period of P (c) similar to 18.3 days. Finally, we investigate the two-planet system's long-term stability and overall orbital dynamics with the posterior distribution of our preferred orbital configuration. Our N-body stability simulations show that the system is long-term stable and exhibits large secular osculations in eccentricity but in no particular mean motion resonance configuration. The HD 107148 system, consisting of a solar-type main-sequence star with two giant planets in a rare configuration, features a common proper-motion white dwarf companion and is therefore a valuable target for understanding the formation and evolution of planetary systems. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0004-6256 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000778725000001 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1562 | ||
Permanent link to this record | |||||
Author | Rodriguez, JE.; Quinn, SN.; Zhou, G.; Vanderburg, A.; Nielsen, LD.; Wittenmyer, RA.; Brahm, R.; Reed, PA.; Huang, CLX.; Vach, S.; Ciardi, DR.; Oelkers, RJ.; Stassun, KG.; Hellier, C.; Gaudi, BS.; Eastman, JD.; Collins, KA.; Bieryla, A.; Christian, S.; Latham, DW.; Carleo, I.; Wright, DJ.; Matthews, E.; Gonzales, EJ.; Ziegler, C.; Dressing, CD.; Howell, SB.; Tan, TG.; Wittrock, J.; Plavchan, P.; McLeod, KK.; Baker, D.; Wang, GV.; Radford, DJ.; Schwarz, RP.; Esposito, M.; Ricker, GR.; Vanderspek, RK.; Seager, S.; Winn, JN.; Jenkins, JM.; Addison, B.; Anderson, DR.; Barclay, T.; Beatty, TG.; Berlind, P.; Bouchy, F.; Bowen, M.; Bowler, BP.; Brasseur, CE.; Briceno, C.; Caldwell, DA.; Calkins, ML.; Cartwright, S.; Chaturvedi, P.; Chaverot, G.; Chimaladinne, S.; Christiansen, JL.; Collins, KI.; Crossfield, IJM.; Eastridge, K.; Espinoza, N.; Esquerdo, GA.; Feliz, DL.; Fenske, T.; Fong, W.; Gan, TJ.; Giacalone, S.; Gill, H.; Gordon, L.; Granados, A.; Grieves, N.; Guenther, EW.; Guerrero, N.; Henning, T.; Henze, CE.; Hesse, K.; Hobson, MJ.; Horner, J.; James, DJ.; Jensen, ELN.; Jimenez, M.; Jordan, A.; Kane, SR.; Kielkopf, J.; Kim, K.; Kuhn, RB.; Latouf, N.; Law, NM.; Levine, AM.; Lund, MB.; Mann, AW.; Mao, SD.; Matson, RA.; Mengel, MW.; Mink, J.; Newman, P.; O'Dwyer, T.; Okumura, J.; Palle, E.; Pepper, J.; Quintana, EV.; Sarkis, P.; Savel, AB.; Schlieder, JE.; Schnaible, C.; Shporer, A.; Sefako, R.; Seidel, JV.; Siverd, RJ.; Skinner, B.; Stalport, M.; Stevens, DJ.; Stibbards, C.; Tinney, CG.; West, RG.; Yahalomi, DA.; Zhang, H. | ||||
Title | TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images | Type | |||
Year | 2021 | Publication | Astronomical Journal | Abbreviated Journal | Astron. J. |
Volume | 161 | Issue | 4 | Pages ![]() |
194 |
Keywords | Exoplanet astronomy; Exoplanet migration; Exoplanet detection methods; Exoplanets; Transits; Radial velocity; Direct imaging | ||||
Abstract | We present the discovery and characterization of five hot and warm Jupiters-TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b ( TIC 139375960)-based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (R-P = 1.01-1.77 R-J) and have masses that range from 0.85 to 6.33 M-J. The host stars of these systems have F and G spectral types (5595 <= T-eff <= 6460 K) and are all relatively bright (9.5 < V < 10.8, 8.2 < K < 9.3), making them well suited for future detailed characterization efforts. Three of the systems in our sample (TOI-640 b, TOI-1333 b, and TOI-1601 b) orbit subgiant host stars (log g < 4.1). TOI-640 b is one of only three known hot Jupiters to have a highly inflated radius (R-P > 1.7 R-J, possibly a result of its host star's evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of 6.31(-0.30)(+) (0.28) M-J and a statistically significant, nonzero orbital eccentricity of e = 0.074(-0.022)(+) (0.021). This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA's TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0004-6256 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000632893600001 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1358 | ||
Permanent link to this record | |||||
Author | Bergsten, G.J.; Pascucci, I.; Mulders, G.D.; Fernandes, R.B.; Koskinen, T.T. | ||||
Title | The Demographics of Kepler's Earths and Super-Earths into the Habitable Zone | Type | |||
Year | 2022 | Publication | Astronomical Journal | Abbreviated Journal | Astron. J. |
Volume | 164 | Issue | 5 | Pages ![]() |
190 |
Keywords | POWERED MASS-LOSS; PLANET OCCURRENCE RATES; RADIUS DISTRIBUTION; RELIABILITY; DEPENDENCE; EXOPLANETS; MISSION; VALLEY; TRENDS | ||||
Abstract | Understanding the occurrence of Earth-sized planets in the habitable zone of Sun-like stars is essential to the search for Earth analogs. Yet a lack of reliable Kepler detections for such planets has forced many estimates to be derived from the close-in (2 < P-orb < 100 days) population, whose radii may have evolved differently under the effect of atmospheric mass-loss mechanisms. In this work, we compute the intrinsic occurrence rates of close-in super-Earths (similar to 1-2 R-circle plus and sub-Neptunes (similar to 2-3.5 R-circle plus) for FGK stars (0.56-1.63 M-circle dot) as a function of orbital period and find evidence of two regimes: where super-Earths are more abundant at short orbital periods, and where sub-Neptunes are more abundant at longer orbital periods. We fit a parametric model in five equally populated stellar mass bins and find that the orbital period of transition between these two regimes scales with stellar mass, like P-trans proportional to M-*(1.7 +/- 0.2). Ptrans These results suggest a population of former sub-Neptunes contaminating the population of gigayear-old close-in super-Earths, indicative of a population shaped by atmospheric loss. Using our model to constrain the long-period population of intrinsically rocky planets, we estimate an occurrence rate of Gamma(circle plus) = 15(-4)(+6)% for Earth-sized habitable zone planets, and predict that sub-Neptunes may be similar to twice as common as super-Earths in the habitable zone (when normalized over the natural log-orbital period and radius range used). Finally, we discuss our results in the context of future missions searching for habitable zone planets. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0004-6256 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000867413100001 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1665 | ||
Permanent link to this record | |||||
Author | Smith, AMS.; Acton, JS.; Anderson, DR.; Armstrong, DJ.; Bayliss, D.; Belardi, C.; Bouchy, F.; Brahm, R.; Briegal, JT.; Bryant, EM.; Burleigh, MR.; Cabrera, J.; Chaushev, A.; Cooke, BF.; Costes, JC.; Csizmadia, S.; Eigmuller, P.; Erikson, A.; Gill, S.; Gillen, E.; Goad, MR.; Gunther, MN.; Henderson, BA.; Hogan, A.; Jordan, A.; Lendl, M.; McCormac, J.; Moyano, M.; Nielsen, LD.; Rauer, H.; Raynard, L.; Tilbrook, RH.; Turner, O.; Udry, S.; Vines, JI.; Watson, CA.; West, RG.; Wheatley, PJ. | ||||
Title | NGTS-14Ab: a Neptune-sized transiting planet in the desert | Type | |||
Year | 2021 | Publication | Astronomy & Astrophysics | Abbreviated Journal | Astron. Astrophys. |
Volume | 646 | Issue | Pages ![]() |
A183 | |
Keywords | planetary systems; planets and satellites: detection; planets and satellites: individual: NGTS-14Ab; binaries: general | ||||
Abstract | Context. The sub-Jovian, or Neptunian, desert is a previously identified region of parameter space where there is a relative dearth of intermediate-mass planets with short orbital periods.Aims. We present the discovery of a new transiting planetary system within the Neptunian desert, NGTS-14.Methods. Transits of NGTS-14Ab were discovered in photometry from the Next Generation Transit Survey (NGTS). Follow-up transit photometry was conducted from several ground-based facilities, as well as extracted from TESS full-frame images. We combine radial velocities from the HARPS spectrograph with the photometry in a global analysis to determine the system parameters.Results. NGTS-14Ab has a radius that is about 30 per cent larger than that of Neptune (0.444 +/- 0.030 R-Jup) and is around 70 per cent more massive than Neptune (0.092 +/- 0.012 M-Jup). It transits the main-sequence K1 star, NGTS-14A, with a period of 3.54 days, just far away enough to have maintained at least some of its primordial atmosphere. We have also identified a possible long-period stellar mass companion to the system, NGTS-14B, and we investigate the binarity of exoplanet host stars inside and outside the Neptunian desert using Gaia. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0004-6361 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000624671800002 | Approved | |||
Call Number | UAI @ alexi.delcanto @ | Serial | 1352 | ||
Permanent link to this record |