|   | 
Details
   web
Records
Author Shanmugaraj, K.; Mangalaraja, R.V.; Campos, C.H.; Singh, D.P.; Aepuru, R.; Thirumurugan, A.; Gracia-Pinilla, M.A.; Shaji, S.
Title Gold nanoparticles decorated two-dimensional TiO2 nanosheets as effective catalyst for nitroarenes and rhodamine B dye reduction in batch and continuous flow methods Type
Year 2023 Publication Inorganic Chemistry Communications Abbreviated Journal Inorg. Chem. Commun.
Volume 149 Issue Pages 110406
Keywords Gold nanoparticles modified TiO 2 nanosheets; Catalytic reduction; Nitroarenes; Fixed bed reactor; Rhodamine B; Rate constant
Abstract Our environment is greatly endangered by the accumulation of various toxic organic pollutants that are continually produced through unavoidable human needs and the industrialization process. Herein, we report highly active gold nanoparticles (AuNPs) immobilized on two-dimensional (2D) TiO2 nanosheets (AuNPs-TiO2NSs) as a catalyst for the catalytic reduction of nitroarenes (NAs) such as 4-nitroaniline (4-NA), 4-(4-nitrophenyl)morpholine (4-NM), 4-(2-fluoro-4-nitrophenyl)morpholine (4-FNM) and rhodamine B (RhB) dye in the presence of sodium borohydride (NaBH4) medium. Initially, TiO2NSs are prepared by the hydrothermal treatment followed by the modification with 3-aminopropyl-trimethoxysilane (APTMS) coupling agent for strong anchoring of the AuNPs. HR-TEM images exhibit that AuNPs (2.30 +/- 0.06 nm) are immobilized on the surface of ultrathin 2-dimensional TiO2NSs. AuNPs-TiO2NSs catalyst shows excellent catalytic activity towards the reduction of various NAs (4-NA, 4-NM and 4-FNM) and RhB dye with maximum conversion efficiency of >98 %. Moreover, the pseudo-first-order rate constants are estimated as 5.50 x 10- 3 s- 1, 7.20 x 10- 3 s- 1, 6.40 x 10-3 s- 1 and 4.30 x 10-3 s- 1 for the reduction of 4-NA, 4-NM, 4-FNM, and RhB, respectively. For large-scale in-dustrial applications, AuNPs-TiO2NSs catalyst embedded in a continuous flow-fixed bed reactor for the catalytic reduction of 4-NA and RhB dye under optimized reaction conditions. AuNPs-TiO2NSs catalyst shows high con-version rates for 4-NA (>99 %) and RhB (>99%) along with excellent recyclability over 12 cycles in continuous flow fixed bed reactor. The mechanism of synthetic pathway and catalytic reduction of NAs and RhB dye over AuNPs-TiO2NSs catalyst are also proposed. This study may lead to the use AuNPs-TiO2NSs catalyst with superior recyclable catalytic efficiency in various catalytic reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-7003 ISBN Medium
Area Expedition Conference
Notes WOS:000923758100001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1725
Permanent link to this record
 

 
Author Shanmugaraj, K.; Mangalaraja, R.V.; Campos, C.H.; Udayabhaskar, R.; Singh, D.P.; Vivas, L.; Thirumurugan, A.; Al-Sehemi, A.G.; de Leon, J.N.D.; Ali, W.
Title Cu-Ni bimetallic nanoparticles anchored on halloysite nanotubes for the environmental remediation Type
Year 2023 Publication Surfaces and Interfaces Abbreviated Journal Surf. Interfaces
Volume 41 Issue Pages 103257
Keywords Halloysite nanotubes; Bimetallic nanoparticles; 4-Nitroaniline; Rhodamine B; Synergetic effect
Abstract Hereby, we report the synthesis of CuNi bimetallic nanoparticles (NPs)-decorated halloysite nanotubes (CuNi/ HNTs) for the catalytic reduction of 4-nitroaniline (4-NA) and rhodamine B (RhB) dye in an aqueous medium at room temperature. In this work, CuNi/HNTs composites with different wt% of CuNi NPs were synthesized and characterized by various techniques such as SEM, EDS, XRD, TEM and XPS. The TEM characterization confirmed that the CuNi bimetallic NPs (similar to 11 nm) were successfully anchored onto the outer surface of HNTs. Among the prepared catalysts, Cu0.75Ni0.25/HNTs catalyst displayed highest catalytic activity in the reduction of 4-NA to its corresponding amino derivative in the presence of NaBH4 with a maximum conversion efficiency of >99% and an apparent rate constant k(app) of 0.152 s(- 1) within 30 s of reaction time. Notably, even after 15 cycles of catalytic reduction of 4-NA and RhB, there was no apparent deactivation of the catalytic activity of the Cu0.75Ni0.25/HNTs catalyst, demonstrating the excellent catalytic reusability and stability. The presence of CuNi NPs with low Ni content enhanced the catalytic activity due to the synergetic effect. Moreover, the continuous flow fixed bed reactor designed with Cu0.75Ni0.25/HNTs catalyst exhibited the potential application for the reduction of 4-NA and RhB dye under mild reaction conditions. Furthermore, the present catalytic system could be applicable for the treatment of various wastewater effluents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Medium
Area Expedition Conference
Notes WOS:001056722900001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1883
Permanent link to this record