|   | 
Author Giustinianovich, E.A.; Campos, J.L.; Roeckel, M.D.
Title The presence of organic matter during autotrophic nitrogen removal: Problem or opportunity? Type
Year 2016 Publication Separation And Purification Technology Abbreviated Journal Sep. Purif. Technol.
Volume 166 Issue Pages 102-108
Keywords Anammox; Ammonia oxidation; Heterotrophic denitrification; Nitrogen removal; SNAD
Abstract The simultaneous nitrification, Anammox and denitrification (SNAD) process discovered six years ago is an adaptation of the autotrophic denitrification process that allows for treating nitrogen-rich wastewater streams with moderate amounts of organic carbon. Several authors have noted that it is possible to utilize organic carbon to promote nitrogen removal via the action of denitrifying microorganisms, which can remove the remnant nitrate produced by Anammox bacteria. Thus, SNAD systems can achieve nitrogen removal efficiencies higher than 89%, which is what is expected under autotrophic conditions. Three bacterial groups are responsible for SNAD reactions: ammonium-oxidizing bacteria (AOB), anaerobic ammonium-oxidizing bacteria (AnAOB) and heterotrophic bacteria (HB). Because HB will compete with AOB and AnAOB for oxygen and nitrite, respectively, the system should be operated in such way that a balance among the different bacterial populations is achieved. Here, the results reported in the literature are analyzed to define suitable characteristics of effluents for treatment and operational conditions to allow the SNAD process to be carried out with different types of technologies. (C) 2016 Elsevier B.V. All rights reserved.
Address [Giustinianovich, Elisa A.; Roeckel, Marlene D.] Univ Concepcion, Dept Chem Engn, Casilla 160-C, Concepcion, Chile, Email: mroeckel@udec.cl
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1383-5866 ISBN Medium
Area Expedition Conference
Notes WOS:000376834400013 Approved
Call Number UAI @ eduardo.moreno @ Serial 827
Permanent link to this record