Records |
Author |
Baier, R.V.; Raggio, J.I.C.; Arancibia, C.T.; Bustamante, M.; Perez, L.; Burda, I.; Aiyangar, A.; Vivanco, J.F. |
Title |
Structure-function assessment of 3D-printed porous scaffolds by a low-cost/ open source fused filament fabrication printer |
Type |
|
Year |
2021 |
Publication |
Materials Science & Engineering C-Materials For Biological Applications |
Abbreviated Journal |
Mater. Sci. Eng. C-Mater. Biol. Appl. |
Volume |
123 |
Issue |
|
Pages |
111945 |
Keywords |
3D printer; Scaffold; Fused filament fabrication; Mechanical properties; Finite element method; Cell adhesion efficiency |
Abstract |
Additive manufacturing encompasses a plethora of techniques to manufacture structures from a computational model. Among them, fused filament fabrication (FFF) relies on heating thermoplastics to their fusion point and extruding the material through a nozzle in a controlled pattern. FFF is a suitable technique for tissue engineering, given that allows the fabrication of 3D-scaffolds, which are utilized for tissue regeneration purposes. The objective of this study is to assess a low-cost/open-source 3D printer (In-House), by manufacturing both solid and porous samples with relevant microarchitecture in the physiological range (100?500 ?m pore size), using an equivalent commercial counterpart for comparison. For this, compressive tests in solid and porous scaffolds manufactured in both printers were performed, comparing the results with finite element analysis (FEA) models. Additionally, a microarchitectural analysis was done in samples from both printers, comparing the measurements of both pore size and porosity to their corresponding computer-aided design (CAD) models. Moreover, a preliminary biological assessment was performed using scaffolds from our In-House printer, measuring cell adhesion efficiency. Finally, Fourier transform infrared spectroscopy ? attenuated total reflectance (FTIR?ATR) was performed to evaluate chemical changes in the material (polylactic acid) after fabrication in each printer. The results show that the In-House printer achieved generally better mechanical behavior and resolution capacity than its commercial counterpart, by comparing with their FEA and CAD models, respectively. Moreover, a preliminary biological assessment indicates the feasibility of the In-House printer to be used in tissue engineering applications. The results also show the influence of pore geometry on mechanical properties of 3D-scaffolds and demonstrate that properties such as the apparent elastic modulus (Eapp) can be controlled in 3D-printed scaffolds. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0928-4931 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000636846700007 |
Approved |
|
Call Number |
UAI @ alexi.delcanto @ |
Serial |
1367 |
Permanent link to this record |
|
|
|
Author |
Contreras-Raggio, J.I.; Arancibia, C.T.; Millan, C.; Ploeg, H.L.; Aiyangar, A.; Vivanco, J.F. |
Title |
Height-to-Diameter Ratio and Porosity Strongly Influence Bulk Compressive Mechanical Properties of 3D-Printed Polymer Scaffolds |
Type |
|
Year |
2022 |
Publication |
Polymers |
Abbreviated Journal |
Polymers |
Volume |
14 |
Issue |
22 |
Pages |
5017 |
Keywords |
polymer scaffolds; 3D printing; height; diameter ratio; porosity; pore size; mechanical properties |
Abstract |
Although the architectural design parameters of 3D-printed polymer-based scaffolds-porosity, height-to-diameter (H/D) ratio and pore size-are significant determinants of their mechanical integrity, their impact has not been explicitly discussed when reporting bulk mechanical properties. Controlled architectures were designed by systematically varying porosity (30-75%, H/D ratio (0.5-2.0) and pore size (0.25-1.0 mm) and fabricated using fused filament fabrication technique. The influence of the three parameters on compressive mechanical properties-apparent elastic modulus E-app, bulk yield stress sigma(y) and yield strain epsilon(y)-were investigated through a multiple linear regression analysis. H/D ratio and porosity exhibited strong influence on the mechanical behavior, resulting in variations in mean E-app of 60% and 95%, respectively. sigma(y) was comparatively less sensitive to H/D ratio over the range investigated in this study, with 15% variation in mean values. In contrast, porosity resulted in almost 100% variation in mean sigma(y) values. Pore size was not a significant factor for mechanical behavior, although it is a critical factor in the biological behavior of the scaffolds. Quantifying the influence of porosity, H/D ratio and pore size on bench-top tested bulk mechanical properties can help optimize the development of bone scaffolds from a biomechanical perspective. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2073-4360 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000887647600001 |
Approved |
|
Call Number |
UAI @ alexi.delcanto @ |
Serial |
1655 |
Permanent link to this record |
|
|
|
Author |
Di Genova, A.; Ruz, G.A.; Sagot, M.F.; Maass, A. |
Title |
Fast-SG: an alignment-free algorithm for hybrid assembly |
Type |
|
Year |
2018 |
Publication |
Gigascience |
Abbreviated Journal |
GigaScience |
Volume |
7 |
Issue |
5 |
Pages |
15 pp |
Keywords |
hybrid assembly; genome scaffolding; alignment-free |
Abstract |
Background: Long-read sequencing technologies are the ultimate solution for genome repeats, allowing near reference-level reconstructions of large genomes. However, long-read de novo assembly pipelines are computationally intense and require a considerable amount of coverage, thereby hindering their broad application to the assembly of large genomes. Alternatively, hybrid assembly methods that combine short-and long-read sequencing technologies can reduce the time and cost required to produce de novo assemblies of large genomes. Results: Here, we propose a new method, called Fast-SG, that uses a new ultrafast alignment-free algorithm specifically designed for constructing a scaffolding graph using light-weight data structures. Fast-SG can construct the graph from either short or long reads. This allows the reuse of efficient algorithms designed for short-read data and permits the definition of novel modular hybrid assembly pipelines. Using comprehensive standard datasets and benchmarks, we show how Fast-SG outperforms the state-of-the-art short-read aligners when building the scaffolding graph and can be used to extract linking information from either raw or error-corrected long reads. We also show how a hybrid assembly approach using Fast-SG with shallow long-read coverage (5X) and moderate computational resources can produce long-range and accurate reconstructions of the genomes of Arabidopsis thaliana (Ler-0) and human (NA12878). Conclusions: Fast-SG opens a door to achieve accurate hybrid long-range reconstructions of large genomes with low effort, high portability, and low cost. |
Address |
[Di Genova, Alex; Ruz, Gonzalo A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile, Email: amaass@dim.uchile.cl |
Corporate Author |
|
Thesis |
|
Publisher |
Oxford Univ Press |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2047-217x |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000438568200001 |
Approved |
|
Call Number |
UAI @ eduardo.moreno @ |
Serial |
1036 |
Permanent link to this record |
|
|
|
Author |
Vallejos Baier, R.; Contreras Raggio, J.I.; Millán Giovanetti, C.; Palza, H.; Burda, I.; Terrasi, G.; Weisse, B.; Siqueira De Freitas, G.; Nyström, G.; Vivanco, J.F.; Aiyangar, A.K. |
Title |
Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds |
Type |
|
Year |
2022 |
Publication |
Materials Science & Engineering C-Materials For Biological Applications |
Abbreviated Journal |
Mater. Sci. Eng. C |
Volume |
134 |
Issue |
|
Pages |
112540 |
Keywords |
PCL; Bioglass; Composite bio-scaffolds; Direct ink writing; Additive manufacturing; Composite ink characterization |
Abstract |
Direct ink writing (DIW) is a promising extrusion-based 3D printing technology, which employs an ink-deposition nozzle to fabricate 3D scaffold structures with customizable ink formulations for tissue engineering applications. However, determining the optimal DIW process parameters such as temperature, pressure, and speed for the specific ink is essential to achieve high reproducibility of the designed geometry and subsequent mechano-biological performance for different applications, particularly for porous scaffolds of finite sizes (total volume > 1000 mm3) and controlled pore size and porosity. The goal of this study was to evaluate the feasibility of fabricating Polycaprolactone (PCL) and bio-active glass (BG) composite-based 3D scaffolds of finite size using DIW. 3D-scaffolds were fabricated either as cylinders (10 mm diameter; 15 mm height) or cubes (5 × 5 × 5 mm3) with height/width aspect ratios of 1.5 and 1, respectively. A rheological characterization of the PCL-BG inks was performed before printing to determine the optimal printing parameters such as pressure and speed for printing at 110 °C. Microstructural properties of the scaffolds were analyzed in terms of overall scaffold porosity, and in situ pore size assessments in each layer (36 pores/layer; 1764 pores per specimen) during their fabrication. Measured porosity of the fabricated specimens�PCL: =46.94%, SD = 1.61; PCL-10 wt%BG: = 48.29%, SD = 5.95; and PCL-20 wt% BG: =50.87%, SD = 2.45�matched well with the designed porosity of 50%. Mean pore sizes�PCL [ = 0.37 mm (SD = 0.03)], PCL-10%BG [ = 0.38 mm (SD = 0.07)] and PCL-20% BG [ = 0.37 mm (SD = 0.04)]�were slightly fairly close to the designed pore size of 0.4 mm. Nevertheless there was a small but consistent, statistically significant (p < 0.0001) decrease in pore size from the first printed layer (PCL: 0.39 mm; PCL-10%BG: 0.4 mm; PCL-20%BG: 0.41 mm) to the last. SEM and micro-CT imaging revealed consistent BG particle distribution across the layers and throughout the specimens. Cell adhesion experiments revealed similar cell adhesion of PCL-20 wt% BG to pure PCL, but significantly better cell proliferation � as inferred from metabolic activity � after 7 days, although a decrease after 14 days was noted. Quasi-static compression tests showed a decrease in compressive yield strength and apparent elastic modulus with increasing BG fraction, which could be attributed to a lack of adequate mechanical bonding between the BG particles and the PCL matrix. The results show that the inks were successfully generated, and the scaffolds were fabricated with high resolution and fidelity despite their relatively large size (>1000 mm3). However, further work is required to understand the mechano-biological interaction between the BG particle additives and the PCL matrix to improve the mechanical and biological properties of the printed structures. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0928-4931 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000811741200004 |
Approved |
|
Call Number |
UAI @ alexi.delcanto @ |
Serial |
1553 |
Permanent link to this record |
|
|
|
Author |
Vivanco, J.; Jakes, J.E.; Slane, J.; Ploeg, H.L. |
Title |
Accounting for structural compliance in nanoindentation measurements of bioceramic bone scaffolds |
Type |
|
Year |
2014 |
Publication |
Ceramics International |
Abbreviated Journal |
Ceram. Int. |
Volume |
40 |
Issue |
8 |
Pages |
12485-12492 |
Keywords |
Bioceramic; Bone scaffold; Nanoindentation; Musculoskeletal injuries |
Abstract |
Structural properties have been shown to be critical in the osteoconductive capacity and strength of bioactive ceramic bone scaffolds. Given the cellular foam-like structure of bone scaffolds, nanoindentation has been used as a technique to assess the mechanical properties of individual components of the scaffolds. Nevertheless, nanoindents placed on scaffolds may violate the rigid support assumption of the standard Oliver-Pharr method currently used in evaluating the Meyer hardness, H, and elastic modulus, E-s, of such structures. Thus, the objective of this research was to use the structural compliance method to assess whether or not specimen-scale flexing may occur during nanoindentation of bioceramic bone scaffolds and to remove the associated artifact on the H and E-s if it did occur. Scaffolds were fabricated using tricalcium phosphate and sintered at 950 degrees C and 1150 degrees C, and nanoindents were placed in three different (center, edge, and corner) scaffold locations. Using only the standard Oliver-Pharr analysis it was found that H and E-s were significantly affected by both sintering temperature and nanoindents location (p < 0.05). However, specimen-scale flexing occurred during nanoindentation in the 1150 degrees C corner location. After removing the effects of the flexing from the measurement using the structural compliance method, it was concluded that H and E-s were affected only by the sintering temperature (p < 0.05) irrespective of the nanoindent locations. These results show that specimen-scale flexing may occur during nanoindentation of components in porous bioceramic scaffolds or in similar structure biomaterials, and that the structural compliance method must be utilized to accurately assess H and E-s of these components. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved. |
Address |
[Vivanco, Juan; Slane, Josh; Ploeg, Heidi-Lynn] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA, Email: vivanco@wisc.edu |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Sci Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0272-8842 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000340328600122 |
Approved |
|
Call Number |
UAI @ eduardo.moreno @ |
Serial |
400 |
Permanent link to this record |