toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lagos, N.A.; Benitez, S.; Duarte, C.; Lardies, M.A.; Broitman, B.R.; Tapia, C.; Tapia, P.; Widdicombe, S.; Vargas, C.A. pdf  doi
openurl 
  Title Effects of temperature and ocean acidification on shell characteristics of Argopecten purpuratus: implications for scallop aquaculture in an upwelling-influenced area Type
  Year 2016 Publication Aquaculture Environment Interactions Abbreviated Journal Aquac. Environ. Interact.  
  Volume 8 Issue Pages 357-370  
  Keywords Calcification; Shell growth; Scallop farming; Upwelling; Chile  
  Abstract Coastal upwelling regions already constitute hot spots of ocean acidification as naturally acidified waters are brought to the surface. This effect could be exacerbated by ocean acidification and warming, both caused by rising concentrations of atmospheric CO2. Along the Chilean coast, upwelling supports highly productive fisheries and aquaculture activities. However, during recent years, there has been a documented decline in the national production of the native scallop Argopecten purpuratus. We assessed the combined effects of temperature and pCO(2)-driven ocean acidification on the growth rates and shell characteristics of this species farmed under the natural influence of upwelling waters occurring in northern Chile (30 degrees S, Tongoy Bay). The experimental scenario representing current conditions (14 degrees C, pH similar to 8.0) were typical of natural values recorded in Tongoy Bay, whilst conditions representing the low pH scenario were typical of an adjacent upwelling area (pH similar to 7.6). Shell thickness, weight, and biomass were reduced under low pH (pH similar to 7.7) and increased temperature (18 degrees C) conditions. At ambient temperature (14 degrees C) and low pH, scallops showed increased shell dissolution and low growth rates. However, elevated temperatures ameliorated the impacts of low pH, as evidenced by growth rates in both pH treatments at the higher temperature treatment that were not significantly different from the control treatment. The impact of low pH at current temperature on scallop growth suggests that the upwelling could increase the time required for scallops to reach marketable size. Mortality of farmed scallops is discussed in relation to our observations of multiple environmental stressors in this upwelling-influenced area.  
  Address [Lagos, Nelson A.; Benitez, Samanta] Univ Santo Tomas, Fac Ciencias, Ctr Invest & Innovac Cambio Climat, Santiago 8370003, Chile, Email: nlagoss@santotomas.cl  
  Corporate Author Thesis  
  Publisher Inter-Research Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1869-215x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000377605600030 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 630  
Permanent link to this record
 

 
Author Ramajo, L.; Fernandez, C.; Nunez, Y.; Caballero, P.; Lardies, M.A.; Poupin, M.J. pdf  doi
openurl 
  Title Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling Type
  Year 2019 Publication Ices Journal Of Marine Science Abbreviated Journal ICES J. Mar. Sci.  
  Volume 76 Issue 6 Pages 1836-1849  
  Keywords environmental drivers; environmental heterogeneity; global change; metabolism; multi-stressor; physiology; tolerance; upwelling  
  Abstract Coastal biota is exposed to continuous environmental variability as a consequence of natural and anthropogenic processes. Responding to heterogeneous conditions requires the presence of physiological strategies to cope with the environment. Ecosystems influenced by upwelling endure naturally cold, acidic and hypoxic conditions, nevertheless they sustain major fisheries worldwide. This suggests that species inhabiting upwelling habitats possess physiological adaptations to handle high environmental variability. Here, we assessed the impact of the main upwelling drivers (temperature, pH and oxygen) in isolation and combined on eco-physiological responses of Chilean scallop Argopecten purpuratus. A. purpuratus responded to hypoxia by increasing their metabolic performance to maintain growth and calcification. Calcification was only affected by pH and increased under acidic conditions. Further, A. purpuratus juveniles prioritized calcification at the expense of growth under upwelling conditions. Increasing temperature had a significant impact by enhancing the physiological performance of A. purpuratus juveniles independently of oxygen and pH conditions, but this was associated with earlier and higher mortalities. Our results suggest that A. purpuratus is acclimated to short-term colder, acidic and hypoxic conditions, and provide important information of how this species responds to the heterogeneous environment of upwelling, which is significantly relevant in the climatic context of upwelling intensification.  
  Address [Ramajo, Laura; Fernandez, Carolina; Lardies, Marco A.] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Ave Diagonal Las Torres 2640, Santiago, Chile, Email: laura.ramajo@ceaza.cl  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1054-3139 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000501732500040 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 1068  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: