Records |
Author |
Beya-Marshall, V.; Arcos, E.; Seguel, O.; Galleguillos, M.; Kremer, C. |
Title |
Optimal irrigation management for avocado (cv. 'Hass') trees by monitoring soil water content and plant water status |
Type |
|
Year |
2022 |
Publication |
Agricultural Water Management |
Abbreviated Journal |
Agric. Water Manag. |
Volume |
271 |
Issue |
|
Pages |
107794 |
Keywords |
Water productivity; Stem water potential; Baseline; Frequency domain reflectometry; Irrigation scheduling; Yield; Water scarcity |
Abstract |
Irrigation scheduling based on soil water content (Ow) sensors requires that Ow be maintained within a range (management lines) that is optimal for plant growth. The lower limit or “breaking point ” is determined following the soil water content dynamics on the transition of a rapid rate of depletion to a slower, under similar reference evapotranspiration. Although this criterion is practical, its implementation should be validated with plant water status measurement that contemplate weather condition, such as stem water potential “non-stressed ” baseline (Tx as a function of vapor-pressure deficit (VPD) in Ow conditions that do not limit yield). A study was con-ducted on a mature cv. 'Hass' avocado orchard in Central Chile during two seasons. There were 5 irrigation treatments: T1, Control; T2 and T3 with 29% less and 25% more of what was applied in T1, respectively; T4 and T5 same as Control until first and second fruit drop abscission, respectively, and then with 29% less. T1 trees were irrigated using a continuous frequency domain reflectometry (FDR) probe to maintain the root zone be-tween field capacity and the breaking point. There was biweekly monitoring of the Ow prior to irrigation, Tx and VPD. The Tx decline proportional to the intensity and the timing of water restriction; however, no treatment affected the crop load in either season. T2 did not show significant detrimental in fruit size, production and maturation, despite that frequently reached water content levels at the limit of the breaking point, and showed lower levels of stem water potential than Control, being the treatment with the highest water productivity. The results confirm that breaking point is an effective criterion to establish irrigation management. Additionally, when comparing the baseline for our non-stressed trees with a baseline from full irrigation treatments obtained from the literature, 30% water savings were achieved. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0378-3774 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000831063900003 |
Approved |
|
Call Number |
UAI @ alexi.delcanto @ |
Serial |
1615 |
Permanent link to this record |
|
|
|
Author |
Crutchik, D.; Campos, J.L. |
Title |
Municipal Wastewater Reuse: Is it a Competitive Alternative to Seawater Desalination? |
Type |
|
Year |
2021 |
Publication |
Sustainability |
Abbreviated Journal |
Sustainability |
Volume |
13 |
Issue |
12 |
Pages |
6815 |
Keywords |
economic analysis; non-conventional water resources; resource recovery; water; water scarcity |
Abstract |
Water scarcity is becoming a global challenge to attempts to narrow the water demand-supply gap. To overcome this problem, it is sensible to consider alternative technologies that can exploit non-conventional water resources. The choice of such technologies should be, however, carefully analyzed, because any choice might be unfeasible from an economic point of view. In this work, a methodology to select the most appropriate non-conventional water resource, out of municipal wastewater and seawater, was proposed. Specifically, we attempted to determine which alternative provides cheaper water supply and production costs for domestic uses, depending on the wastewater treatment system used and the water plant capacity. The production of water under three scenarios was analyzed: (i) a city that has a conventional wastewater treatment plant (WWTP); (ii) a city that uses primary treatment and submarine outfalls to treat municipal wastewater; (iii) seawater desalination. The proposed methodology was tested in Chilean cities that are located in areas where water is a scarce resource. The results showed that the reuse of municipal wastewater represents a cost-competitive alternative to seawater desalination, mainly when municipal wastewater is treated in a conventional WWTP and when water flow demand is higher than 1500 m(3)/d. In contrast, seawater desalination becomes more profitable than wastewater reuse when the treatment of municipal wastewater is based on the use of submarine outfalls. This study provides a useful economic tool for promoting municipal wastewater reuse as a non-conventional water source for supplying water to cities that suffer from water scarcity in Chile and in similar areas of the world. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2071-1050 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000667361600001 |
Approved |
|
Call Number |
UAI @ alexi.delcanto @ |
Serial |
1428 |
Permanent link to this record |
|
|
|
Author |
Mejia, H.F.G.; Toledo-Alarcon, J.; Rodriguez, B.; Cifuentes, J.R.; Porre, F.O.; Haeger, M.P.L.; Ovalle, N.V.; Astudillo, C.L.; Garcia, A. |
Title |
Direct recycling of discarded reverse osmosis membranes for domestic wastewater treatment with a focus on water reuse |
Type |
|
Year |
2022 |
Publication |
Chemical Engineering Research & Design |
Abbreviated Journal |
Chem. Eng. Res. Des. |
Volume |
184 |
Issue |
|
Pages |
473-487 |
Keywords |
Desalination; RO membranes; Discarded; Secondary wastewater; Water scarcity |
Abstract |
The recycling of discarded membranes (end-of-life) represents a relevant alternative for sustainability of reverse osmosis (RO) desalination plants in the context of circular economy. This work evaluated the feasibility of using discarded commercial RO membranes in the treatment of domestic secondary wastewater to obtain water with a certain standard quality. Crossflow filtration tests were conducted to evaluate desalination and wastewater filtration performance at different operating pressures on RO membranes discarded from desalination plans at different working positions (primary M1; secondary M2). The standard manufacturer desalination tests showed a superior performance on M1 membranes, in terms of rejection (similar to 25 LMH, 97%), compared to M2 (similar to 33 LMH, 50%); both having a lower performance than a standard membrane (38 LMH +/- 15%; 99.6%). The failure is sufficient for discarding due to loss of lifespan. Moreover, in wastewater filtration tests using the secondary clarifier outlet effluent from a WWTP at different working pressures, both types of membranes were shown to be effective, with degrees of performance highly dependent on the working pressure. Thus, the operating values of permeate flux/salt rejection were between 56 and 59 LMH/ 96-97% for 600 psi: 33-34 LMH/ 94-96% for 300-psi and in the range of 10-11 LMH/ 90-94% for 80-psi test. Surface characterization of the membrane showed a pressure-related increase in fouling and bacterial adhesion post-filtration. Finally, the operating performance was verified in M1 wastewater filtration at 300 psi over long times (14 h), yielding stable and promising values (similar to 27 LMH; 96%). The permeate obtained has a low concentration of fecal coliforms (< 2 MPN/ 100 mL, 99.99% removal) and meets local standards for irrigation and drinking water in terms of conductivity, phosphorus and nitrogen concentration in treated water. (c) 2022 Institution of Chemical Engineers. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0263-8762 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000841163700005 |
Approved |
|
Call Number |
UAI @ alexi.delcanto @ |
Serial |
1635 |
Permanent link to this record |
|
|
|
Author |
Ruffino, B.; Campo, G.; Crutchik, D.; Reyes, A.; Zanetti, M. |
Title |
Drinking Water Supply in the Region of Antofagasta (Chile): A Challenge between Past, Present and Future |
Type |
|
Year |
2022 |
Publication |
International Journal of Environmental Research and Public Health |
Abbreviated Journal |
Int. J. Environ. Res. Public Health |
Volume |
19 |
Issue |
21 |
Pages |
14406 |
Keywords |
water scarcity; arsenic contamination; mining; Agua Potable Rural program; Chilean Water Code; climate change; water treatment plant; environmental sanitary engineering; SDG6; clean water and sanitation |
Abstract |
Since the mid-nineteen century, when the first mining companies were established in the region of Antofagasta to extract saltpeter, mining managers and civil authorities have always had to face a number of problems to secure a water supply sufficient for the development of industrial activities and society. The unique features of the region, namely the scarcity of rainfall, the high concentration of arsenic in freshwaters and the increasing pressure of the mining sector, have made the supply of drinking water for local communities a challenge. In the 1950s, the town of Antofagasta experienced a serious drinking water crisis. The 300 km long aqueduct starting from the Toconce catchment, opened in 1958, temporarily ended this shortage of drinking water but created an even more dramatic problem. The concentration of arsenic in the water consumed by the population had grown by approx. ten times, reaching the value of 0.860 mg/L and seriously affecting people's health. The water treatment plants (WTPs) which were installed starting from the 1970s in the region (namely the Old and New Salar del Carmen in Antofagasta and Cerro Topater in Calama, plus the two recent desalination plants in Antofagasta and Tocopilla), have ensured, since 2014, that the drinking water coverage in the urban areas was practically universal (>99.9%). However, the rural areas have continued to experience significant shortcomings regarding their capacity to ensure the quality and continuity of the water supply service in the long run. Presently, approx. 42% of the rural population of the region of Antofagasta does not have a formal supply of drinking water. The recent amendments to the Chilean Water Code (March 2022) and the interventions carried out in the framework of the Agua Potable Rural (APR) program were intended to reduce the socio-ecological inequalities due to the lack of drinking water in the semi-concentrated and isolated rural population. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1660-4601 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000881328000001 |
Approved |
|
Call Number |
UAI @ alexi.delcanto @ |
Serial |
1659 |
Permanent link to this record |