|   | 
Details
   web
Records
Author Alvarez-Miranda, E.; Pereira, J.; Torrez-Meruvia H.; Vila, M.
Title A Hybrid Genetic Algorithm for the Simple Assembly Line Balancing Problem with a Fixed Number of Workstations Type
Year 2021 Publication Mathematics Abbreviated Journal Mathematics
Volume 9 Issue 17 Pages 2157
Keywords assembly lines; manufacturing; line balancing; hybrid genetic algorithm
Abstract The assembly line balancing problem is a classical optimisation problem whose objective is to assign each production task to one of the stations on the assembly line so that the total efficiency of the line is maximized. This study proposes a novel hybrid method to solve the simple version of the problem in which the number of stations is fixed, a problem known as SALBP-2. The hybrid differs from previous approaches by encoding individuals of a genetic algorithm as instances of a modified problem that contains only a subset of the solutions to the original formulation. These individuals are decoded to feasible solutions of the original problem during fitness evaluation in which the resolution of the modified problem is conducted using a dynamic programming based approach that uses new bounds to reduce its state space. Computational experiments show the efficiency of the method as it is able to obtain several new best-known solutions for some of the benchmark instances used in the literature for comparison purposes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2227-7390 ISBN Medium
Area Expedition Conference
Notes WOS:000694360700001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1466
Permanent link to this record
 

 
Author Alvarez-Miranda, E.; Pereira, J.; Vargas, C.; Vila, M.
Title Variable-depth local search heuristic for assembly line balancing problems Type
Year 2022 Publication International Journal Of Production Research Abbreviated Journal Int. J. Prod. Res.
Volume 61 Issue 9 Pages 3103-3121
Keywords Assembly lines; Manufacturing; simple assembly line balancing; local search; variable-depth local search
Abstract Assembly lines are production flow systems wherein activities are organised around a line consisting of various workstations through which the product flows. At each station, the product is assembled through a subset of operations. The assembly line balancing problem (ALBP) consists of allocating operations between stations to maximise the system efficiency. In this study, a variable-depth local search algorithm is proposed for solving simple assembly line balancing problems (SALBPs), which are the most widely studied versions of the ALBP. Although the state-of-the-art techniques for solving the SALBP consist of exact enumeration-based methods or heuristics, this paper proposes a local search-based heuristic using variable-length sequences that allow the solution space to be efficiently explored. The proposed algorithm improves the best solution known for multiple instances reported in the literature, indicating that its efficiency is comparable to those of the state-of-the-art method for solving the SALBP. Moreover, the characteristics of the instances for which the proposed procedure provides a better solution than previously reported construction procedures are investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-7543 ISBN Medium
Area Expedition Conference
Notes WOS:000800928700001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1578
Permanent link to this record