toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Pavissich, J.P.; Vargas, I.T.; Gonzalez, B.; Pasten, P.A.; Pizarro, G.E. pdf  doi
openurl 
  Title Culture dependent and independent analyses of bacterial communities involved in copper plumbing corrosion Type
  Year 2010 Publication Journal Of Applied Microbiology Abbreviated Journal J. Appl. Microbiol.  
  Volume 109 Issue 3 Pages 771-782  
  Keywords bacterial community; biofilm; copper plumbing; microbially influenced corrosion; water quality  
  Abstract Aims: This study used culture-dependent and culture-independent approaches to characterize bacterial communities in copper plumbing corrosion and to assess biofilm formation and copper resistance of heterotrophic bacteria isolated from copper pipes. Methods and Results: Water and copper pipes were collected from a cold-water household distribution system affected by 'blue water' corrosion and presenting biofilm formation. Corrosion-promoting ageing experiments were performed with conditioned unused copper pipes filled with unfiltered and filtered sampled water as nonsterile and sterile treatments, respectively. During 8 weeks, stagnant water within the pipes was replaced with aerated fresh water every 2 or 3 days. Total copper and pH were determined in sampled water, and copper pipe coupons were cut for microscopic analyses. Biofilms were extracted from field and laboratory pipes, and total DNA was isolated. Bacterial communities' composition was analysed by terminal restriction fragment length polymorphism (T-RFLP) and clonal libraries of 16S rRNA genes. Heterotrophic bacterial isolates were obtained from water and biofilm extracts and characterized in terms of biofilm formation capacity and copper minimum inhibitory concentration. The results indicated that copper concentration in stagnant water from nonsterile treatments was much higher than in sterile treatments and corrosion by-products structure in coupon surfaces was different. Multivariate analysis of T-RFLP profiles and clone sequencing showed significant dissimilarity between field and laboratory biofilm communities, and a low richness and the dominant presence of Gamma- and Betaproteobacteria in both cases. Several bacterial isolates formed biofilm and tolerated high copper concentrations. Conclusions: The study demonstrates microbially influenced corrosion (MIC) in copper plumbing. Gamma- and Betaproteobacteria dominated the corroded copper piping bacterial community, whose ability to form biofilms may be important for bacterial corrosion promotion and survival in MIC events. Significance and Impact of the Study: The characterization of micro-organisms that influence copper plumbing corrosion has significant implications for distribution system management and copper corrosion control.  
  Address [Pavissich, J. P.; Vargas, I. T.; Pasten, P. A.; Pizarro, G. E.] Pontificia Univ Catolica Chile, Dept Ingn Hidraul & Ambiental, Escuela Ingn, Santiago 6904411, Chile, Email: gpizarro@ing.puc.cl  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Publishing, Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1364-5072 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000280979700004 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 93  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: