|   | 
Details
   web
Records
Author Contreras-Raggio, J.I.; Arancibia, C.T.; Millan, C.; Ploeg, H.L.; Aiyangar, A.; Vivanco, J.F.
Title (up) Height-to-Diameter Ratio and Porosity Strongly Influence Bulk Compressive Mechanical Properties of 3D-Printed Polymer Scaffolds Type
Year 2022 Publication Polymers Abbreviated Journal Polymers
Volume 14 Issue 22 Pages 5017
Keywords polymer scaffolds; 3D printing; height; diameter ratio; porosity; pore size; mechanical properties
Abstract Although the architectural design parameters of 3D-printed polymer-based scaffolds-porosity, height-to-diameter (H/D) ratio and pore size-are significant determinants of their mechanical integrity, their impact has not been explicitly discussed when reporting bulk mechanical properties. Controlled architectures were designed by systematically varying porosity (30-75%, H/D ratio (0.5-2.0) and pore size (0.25-1.0 mm) and fabricated using fused filament fabrication technique. The influence of the three parameters on compressive mechanical properties-apparent elastic modulus E-app, bulk yield stress sigma(y) and yield strain epsilon(y)-were investigated through a multiple linear regression analysis. H/D ratio and porosity exhibited strong influence on the mechanical behavior, resulting in variations in mean E-app of 60% and 95%, respectively. sigma(y) was comparatively less sensitive to H/D ratio over the range investigated in this study, with 15% variation in mean values. In contrast, porosity resulted in almost 100% variation in mean sigma(y) values. Pore size was not a significant factor for mechanical behavior, although it is a critical factor in the biological behavior of the scaffolds. Quantifying the influence of porosity, H/D ratio and pore size on bench-top tested bulk mechanical properties can help optimize the development of bone scaffolds from a biomechanical perspective.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4360 ISBN Medium
Area Expedition Conference
Notes WOS:000887647600001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1655
Permanent link to this record
 

 
Author Vicuna, L.; Norambuena, T.; Miranda, JP.; Pereira, A.; Mericq, V.; Ongaro, L.; Montinaro, F.; Santos, JL.; Eyheramendy, S.
Title (up) Novel loci and mapuche genetic ancestry are associated with pubertal growth traits in Chilean boys Type
Year 2021 Publication Human Genetics Abbreviated Journal Hum. Genet.
Volume 140 Issue 12 Pages 1651-1661
Keywords PEAK HEIGHT VELOCITY; SECULAR TRENDS; GENOME; HEALTH; GWAS; AGE; SELECTION; VARIANTS; RESOURCE; DISEASE
Abstract Puberty is a complex developmental process that varies considerably among individuals and populations. Genetic factors explain a large proportion of the variability of several pubertal traits. Recent genome-wide association studies (GWAS) have identified hundreds of variants involved in traits that result from body growth, like adult height. However, they do not capture many genetic loci involved in growth changes over distinct growth phases. Further, such GWAS have been mostly performed in Europeans, but we do not know how these findings relate to other continental populations. In this study, we analyzed the genetic basis of three pubertal traits; namely, peak height velocity (PV), age at PV (APV) and height at APV (HAPV). We analyzed a cohort of 904 admixed Chilean children and adolescents with European and Mapuche Native American ancestries. Height was measured on roughly a 6-month basis from childhood to adolescence between 2006 and 2019. We predict that the difference in HAPV between an European and a Mapuche adolescent is 4.3 cm higher in the European (P = 0.042) and APV is 0.73 years later for the European compared with the Mapuche adolescent on average (P = 0.023). Further, by performing a GWAS on 774, 433 single-nucleotide polymorphisms, we identified a genetic signal harboring 3 linked variants significantly associated with PV in boys (P < 5 x 10(-8)). This signal has never been associated with growth-related traits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0340-6717 ISBN Medium
Area Expedition Conference
Notes WOS:000655840600001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1394
Permanent link to this record