|   | 
Details
   web
Records
Author Diaz-Rullo, J.; Rodriguez-Valdecantos, G.; Torres-Rojas, F.; Cid, L.; Vargas, I.T.; Gonzalez, B.; Gonzalez-Pastor, J.E.
Title Mining for Perchlorate Resistance Genes in Microorganisms From Sediments of a Hypersaline Pond in Atacama Desert, Chile Type
Year 2021 Publication Frontiers In Microbiology Abbreviated Journal Front. Microbiol.
Volume 12 Issue Pages 723874
Keywords perchlorate-resistance; oxidative stress; tRNA modification; DNA repair; protein damage; hypersaline environments; Atacama Desert; Mars
Abstract Perchlorate is an oxidative pollutant toxic to most of terrestrial life by promoting denaturation of macromolecules, oxidative stress, and DNA damage. However, several microorganisms, especially hyperhalophiles, are able to tolerate high levels of this compound. Furthermore, relatively high quantities of perchlorate salts were detected on the Martian surface, and due to its strong hygroscopicity and its ability to substantially decrease the freezing point of water, perchlorate is thought to increase the availability of liquid brine water in hyper-arid and cold environments, such as the Martian regolith. Therefore, perchlorate has been proposed as a compound worth studying to better understanding the habitability of the Martian surface. In the present work, to study the molecular mechanisms of perchlorate resistance, a functional metagenomic approach was used, and for that, a small-insert library was constructed with DNA isolated from microorganisms exposed to perchlorate in sediments of a hypersaline pond in the Atacama Desert, Chile (Salar de Maricunga), one of the regions with the highest levels of perchlorate on Earth. The metagenomic library was hosted in Escherichia coli DH10B strain and exposed to sodium perchlorate. This technique allowed the identification of nine perchlorate-resistant clones and their environmental DNA fragments were sequenced. A total of seventeen ORFs were predicted, individually cloned, and nine of them increased perchlorate resistance when expressed in E. coli DH10B cells. These genes encoded hypothetical conserved proteins of unknown functions and proteins similar to other not previously reported to be involved in perchlorate resistance that were related to different cellular processes such as RNA processing, tRNA modification, DNA protection and repair, metabolism, and protein degradation. Furthermore, these genes also conferred resistance to UV-radiation, 4-nitroquinoline-N-oxide (4-NQO) and/or hydrogen peroxide (H2O2), other stress conditions that induce oxidative stress, and damage in proteins and nucleic acids. Therefore, the novel genes identified will help us to better understand the molecular strategies of microorganisms to survive in the presence of perchlorate and may be used in Mars exploration for creating perchlorate-resistance strains interesting for developing Bioregenerative Life Support Systems (BLSS) based on in situ resource utilization (ISRU).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-302X ISBN Medium
Area Expedition Conference
Notes WOS:000681631900001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1456
Permanent link to this record
 

 
Author Plominsky, A.M.; Henriquez-Castillo, C.; Delherbe, N.; Podell, S.; Ramirez-Flandes, S.; Ugalde, J.A.; Santibanez, J.F.; van den Engh, G.; Hanselmann, K.; Ulloa, O.; De la Iglesia, R.; Allen, E.E.; Trefault, N.
Title Distinctive Archaeal Composition of an Artisanal Crystallizer Pond and Functional Insights Into Salt-Saturated Hypersaline Environment Adaptation Type
Year 2018 Publication Frontiers In Microbiology Abbreviated Journal Front. Microbiol.
Volume 9 Issue Pages 13 pp
Keywords hypersaline environments; solar salterns; metagenomics; microbial ecology; environmental adaptation; functional metagenomics; artisanal crystallizer pond
Abstract Hypersaline environments represent some of the most challenging settings for life on Earth. Extremely halophilic microorganisms have been selected to colonize and thrive in these extreme environments by virtue of a broad spectrum of adaptations to counter high salinity and osmotic stress. Although there is substantial data on microbial taxonomic diversity in these challenging ecosystems and their primary osmoadaptation mechanisms, less is known about how hypersaline environments shape the genomes of microbial inhabitants at the functional level. In this study, we analyzed the microbial communities in five ponds along the discontinuous salinity gradient from brackish to salt-saturated environments and sequenced the metagenome of the salt (halite) precipitation pond in the artisanal Cahuil Solar Saltern system. We combined field measurements with spectrophotometric pigment analysis and flow cytometry to characterize the microbial ecology of the pond ecosystems, including primary producers and applied metagenomic sequencing for analysis of archaeal and bacterial taxonomic diversity of the salt crystallizer harvest pond. Comparative metagenomic analysis of the Cahuil salt crystallizer pond against microbial communities from other salt-saturated aquatic environments revealed a dominance of the archaeal genus Halorubrum and showed an unexpectedly low abundance of Haloquadratum in the Cahuil system. Functional comparison of 26 hypersaline microbial metagenomes revealed a high proportion of sequences associated with nucleotide excision repair, helicases, replication and restriction-methylation systems in all of them. Moreover, we found distinctive functional signatures between the microbial communities from salt-saturated (>30% [w/v] total salinity) compared to sub-saturated hypersaline environments mainly due to a higher representation of sequences related to replication, recombination and DNA repair in the former. The current study expands our understanding of the diversity and distribution of halophilic microbial populations inhabiting salt-saturated habitats and the functional attributes that sustain them.
Address [Plominsky, Alvaro M.; Henriquez-Castillo, Carlos; Santibanez, Juan F.; Ulloa, Osvaldo] Univ Concepcion, Fac Nat & Oceanog Sci, Dept Oceanog, Concepcion, Chile, Email: eallen@ucsd.edu;
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-302x ISBN Medium
Area Expedition Conference
Notes WOS:000441537100001 Approved
Call Number UAI @ eduardo.moreno @ Serial 895
Permanent link to this record