|   | 
Details
   web
Records
Author Asenjo, F.A.; Hojman, S.A.
Title Time-domain supersymmetry for massless scalar and electromagnetic fields in anisotropic cosmologies Type
Year 2023 Publication Physica Scripta Abbreviated Journal Phys. Scr.
Volume 98 Issue 10 Pages 105302
Keywords time-supersymmetry; anisotropic cosmology; massless scalar fields; electromagnetic fields
Abstract It is shown that any cosmological anisotropic model produces supersymmetric theories for both massless scalar and electromagnetic (abelian) fields. This supersymmetric theory is the time-domain analogue of a supersymmetric quantum mechanics algebra theory. In this case, the variations of the anisotropic scale factors of the Universe are responsible for triggering the supersymmetry. For scalar fields, the superpartner fields evolve in two different cosmological scenarios (Universes). On the other hand, for propagating electromagnetic fields, supersymmetry is manifested through its polarization degrees of freedom in one Universe. In this case, polarization degrees of freedom of electromagnetic waves, which are orthogonal to its propagation direction, become superpartners from each other. This behavior can be measured, for example, through the rotation of the plane of polarization of cosmological light.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1402-4896 ISBN Medium
Area Expedition Conference
Notes WOS:001059214000001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1876
Permanent link to this record
 

 
Author Mahajan, S.M.; Asenjo, F.A.; Hazeltine, R.D.
Title Comparison of the electron-spin force and radiation reaction force Type
Year 2015 Publication Monthly Notices Of The Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 446 Issue 4 Pages 4112-4115
Keywords magnetic fields; plasmas; radiation mechanisms: general
Abstract It is shown that the forces that originate from the electron-spin interacting with the electromagnetic field can play, along with the Lorentz force, a fundamentally important role in determining the electron motion in a high energy density plasma embedded in strong high-frequency radiation, a situation that pertains to both laser-produced and astrophysical systems. These forces, for instance, dominate the standard radiation reaction force as long as there is a 'sufficiently' strong ambient magnetic field for affecting spin alignment. The inclusion of spin forces in any advanced modelling of electron dynamics pertaining to high energy density systems (for instance in particle-in-cell codes), therefore, is a must.
Address [Mahajan, Swadesh M.; Hazeltine, Richard D.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA, Email: felipe.asenjo@uai.cl
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000350272400066 Approved
Call Number UAI @ eduardo.moreno @ Serial 462
Permanent link to this record