|   | 
Details
   web
Records
Author Nandhakumar, E.; Selvakumar, P.; Arulraj, A.; Vivek, E.; Venkatraman, M.R.; Sasikumar, A.; Kumar, M.P.; Mangalaraja, R.V.; Kamatchi, R.; Senthilkumar, N.
Title Investigation on rod like SnO2@CdCO3 nanocomposite-based electron transport layer for CsPbBr3 heterojunction perovskite solar cell applications br Type
Year 2023 Publication Materials Letters Abbreviated Journal Mater. Lett.
Volume 330 Issue Pages 133396
Keywords Tin oxide; Dual electron transport layer; PSCs; Solar energy materials; Nanocomposites
Abstract A novel carbonate-based nanocomposite synthesized by hydrothermal technique for planar perovskite solar cells (PPSCs) applications. According to this study, SnO2@CdCO3and SnO2/SnO2@CdCO3 performs as dual electron transporting layers for CsPbBr3 based perovskite solar cell. The fabricated PSCs with architecture of FTO/SnO2/ SnO2@CdCO3/CsPbBr3/C showed a Voc of 0.84 V, Jsc of 12.30 mA cmi 2, PCE of 6.67 % and FF of 0.64 are obtained at ambient condition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-577X ISBN Medium
Area Expedition Conference
Notes WOS:000885762500007 Approved
Call Number UAI @ alexi.delcanto @ Serial 1662
Permanent link to this record
 

 
Author Thandapani, P.; Aepuru, R.; Beron, F.; Mangalaraja, R.V.; Varaprasad, K.; Zabotto, F.L.; Jimenez, J.A.; Denardin, J.C.
Title Multiferroic Electroactive Polymer Blend/Ferrite Nanocomposite Flexible Films for Cooling Devices Type
Year 2023 Publication ACS Applied Polymer Materials Abbreviated Journal ACS Appl. Polym. Mater.
Volume 5 Issue 8 Pages 5926-5936
Keywords i-caloric; magnetic refrigeration; multiferroics; ferroelectric polymers; nanocomposites; ferrites
Abstract In recent days, the interest toward the development ofmulticaloricmaterials for cooling application is increasing, whereas multiferroicmaterials would be the suitable alternative to the conventional refrigerants.To explore them, the poly(methyl methacrylate)/poly(vinylidenefluoride-co-hexafluoropropylene) (PMMA/PVDF-HFP) blend and PMMA/PVDF-HFP/Zn0.5Cu0.5Fe2O4 flexible multiferroicnanocomposite films were fabricated by the solution casting method.The structural analyses prove that the strong interfacial interactionbetween the PMMA/PVDF-HFP blend and the Zn0.5Cu0.5Fe2O4 (ZCF) through hydroxyl (-OH) andcarbonyl group bonding with PVDF-HFP enhanced the thermal stabilityand suppressed the electroactive & beta; phase from 67 to 62%. Experimentalresults show that 10 wt % of superparamagnetic ZCF nanoparticles witha particle size of 6.8 nm induced both the magnetocaloric and magnetoelectriceffects in a nonmagnetic PMMA/PVDF-HFP ferroelectric matrix at roomtemperature. A set of isothermal magnetization curves were recordedin the magnetic field strength of 0-40 kOe and a temperaturerange of 2-400 K. The maximum magnetic entropy changes (& UDelta;S (M)) of -0.69 J & BULL;kg(-1) K-1 of ZCF nanoparticles and -0.094 J & BULL;kg(-1) K-1 of PMMA/PVDF-HFP/ZCF nanocompositesshowed an interesting table-like flat variation in the temperaturerange of 100-400 K as a function of the magnetic field. Thesamples display a large temperature span with a relative cooling power of 293 and 40 J & BULL;kg(-1) for ZCF and PMMA/PVDF-HFP/ZCF,respectively. The magnetoelectric effect of the PMMA/PVDF-HFP/ZCFcomposite was proved, but it generated only 1.42 mV/m & BULL;Oe in theapplied field of 5 kOe. Hence, the entropy change of the present nanocompositewas only due to the magnetocaloric effect, where the magnetoelectriccross-coupling coefficient was negligible. The multicaloric effectcould be established if the nanocomposite showed a larger magnetoelectriccross-coupling in addition to the magnetocaloric effect. This approachprovides the research findings in functional multiferroic polymernanocomposites for miniaturized cooling devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2637-6105 ISBN Medium
Area Expedition Conference
Notes WOS:001030514100001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1848
Permanent link to this record