toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kraiser, T.; Gras, D.E.; Gutierrez, A.G.; Gonzalez, B.; Gutierrez, R.A. pdf  doi
openurl 
  Title A holistic view of nitrogen acquisition in plants Type Journal Article
  Year 2011 Publication Journal Of Experimental Botany Abbreviated Journal J. Exp. Bot.  
  Volume 62 Issue 4 Pages 1455-1466  
  Keywords Bacteria; nitrogen; nitrogen acquisition; plants  
  Abstract Nitrogen (N) is the mineral nutrient required in the greatest amount and its availability is a major factor limiting growth and development of plants. As sessile organisms, plants have evolved different strategies to adapt to changes in the availability and distribution of N in soils. These strategies include mechanisms that act at different levels of biological organization from the molecular to the ecosystem level. At the molecular level, plants can adjust their capacity to acquire different forms of N in a range of concentrations by modulating the expression and function of genes in different N uptake systems. Modulation of plant growth and development, most notably changes in the root system architecture, can also greatly impact plant N acquisition in the soil. At the organism and ecosystem levels, plants establish associations with diverse microorganisms to ensure adequate nutrition and N supply. These different adaptive mechanisms have been traditionally discussed separately in the literature. To understand plant N nutrition in the environment, an integrated view of all pathways contributing to plant N acquisition is required. Towards this goal, in this review the different mechanisms that plants utilize to maintain an adequate N supply are summarized and integrated.  
  Address [Kraiser, Tatiana; Gras, Diana E.; Gutierrez, Rodrigo A.] Pontificia Univ Catolica Chile, Dept Mol Genet & Microbiol, Ctr Genome Regulat, Santiago 8331010, Chile, Email: rgutierrez@bio.puc.cl  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000286989700010 Approved no  
  Call Number UAI @ eduardo.moreno @ Serial 124  
Permanent link to this record
 

 
Author Zhang, H.L.; Baeyens, J.; Degreve, J.; Caceres, G. pdf  doi
openurl 
  Title Concentrated solar power plants: Review and design methodology Type Journal Article
  Year 2013 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew. Sust. Energ. Rev.  
  Volume 22 Issue Pages 466-481  
  Keywords Concentrated solar power plants; Design methodology; Solar towers; Hourly beam irradiation; Plant simulation  
  Abstract Concentrated solar power plants (CSPs) are gaining increasing interest, mostly as parabolic trough collectors (PTC) or solar tower collectors (STC). Notwithstanding CSP benefits, the daily and monthly variation of the solar irradiation flux is a main drawback. Despite the approximate match between hours of the day where solar radiation and energy demand peak, CSPs experience short term variations on cloudy days and cannot provide energy during night hours unless incorporating thermal energy storage (TES) and/or backup systems (BS) to operate continuously. To determine the optimum design and operation of the CSP throughout the year, whilst defining the required TES and/or BS, an accurate estimation of the daily solar irradiation is needed. Local solar irradiation data are mostly only available as monthly averages, and a predictive conversion into hourly data and direct irradiation is needed to provide a more accurate input into the CSP design. The paper (i) briefly reviews CSP technologies and STC advantages; (ii) presents a methodology to predict hourly beam (direct) irradiation from available monthly averages, based upon combined previous literature findings and available meteorological data; (iii) illustrates predictions for different selected STC locations; and finally (iv) describes the use of the predictions in simulating the required plant configuration of an optimum STC. The methodology and results demonstrate the potential of CSPs in general, whilst also defining the design background of STC plants. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address Katholieke Univ Leuven, Dept Chem Engn, Chem & Biochem Proc Technol & Control Sect, B-3001 Heverlee, Belgium, Email: Zhanghl.lily@gmail.com  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000319952100040 Approved no  
  Call Number UAI @ eduardo.moreno @ Serial 287  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: