|   | 
Details
   web
Record
Author Moffat, R.; Caceres, C.; Tapia, E
Title Rock Pillar Design Using a Masonry Equivalent Numerical Model Type
Year 2021 Publication Energies Abbreviated Journal Energies
Volume 14 Issue 4 Pages 890
Keywords rock pillar; design numerical model; mining; underground stability
Abstract In underground mining, the design of rock pillars is of crucial importance as these are structures that allow safe mining by maintaining the stability of the surrounding excavations. Pillar design is often a complex task, as it involves estimating the loads at depths and the strength of the rock mass fabric, which depend on the intact strength of the rock and the shape of the pillar in terms of the aspect ratio (width/height). The design also depends on the number, persistence, orientation, and strength of the discontinuities with respect to the orientation and magnitude of the stresses present. Solutions to this engineering problem are based on one or more of the following approaches: empirical design methods, practical experience, and/or numerical modeling. Based on the similarities between masonry structures and rock mass characteristics, an equivalent approach is proposed as the one commonly used in masonry but applied to rock pillar design. Numerical models using different geometric configurations and state of stresses are carried out using a finite difference numerical approach with an adapted masonry model applied to rocks. The results show the capability of the numerical approach to replicate common types of pillar failure modes and stability thresholds as those observed in practice.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1073 ISBN Medium
Area Expedition Conference
Notes WOS:000623469900001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1350
Permanent link to this record