|   | 
Details
   web
Records
Author Gordon, M.A.; Vargas, F.J.; Peters, A.A.
Title Comparison of Simple Strategies for Vehicular Platooning With Lossy Communication Type
Year 2021 Publication IEEE Access Abbreviated Journal IEEE Access
Volume 9 Issue Pages 103996-104010
Keywords Stability criteria; Numerical stability; Topology; Stochastic processes; Scalability: Loss measurement; Measurement uncertainty; Vehicular platoon control; lossy channels; string stability; constant time-headway; networked systems
Abstract This paper studies vehicle platooning with communication channels subject to random data loss. We focus on homogeneous discrete-time platoons in a predecessor-following topology with a constant time headway policy. We assume that each agent in the platoon sends its current position to the immediate follower through a lossy channel modeled as a Bernoulli process. To reduce the negative effects of data loss over the string stability and performance of the platoon, we use simple strategies that modify the measurement, error, and control signals of the feedback control loop, in each vehicle, when a dropout occurs. Such strategies are based on holding the previous value, dropping to zero, or replacing with a prediction based on a simple linear extrapolation. We performed a simulation-based comparison among a set of different strategies, and found that some strategies are favorable in terms of performance, while some others present improvements for string stabilization. These results strongly suggest that proper design of compensation schemes for the communications of interconnected multi-agent systems plays an important role in their performance and their scalability properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-3536 ISBN Medium
Area Expedition Conference
Notes WOS:000679523500001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1442
Permanent link to this record
 

 
Author Villenas, F.I.; Vargas, F.J.; Peters, A.A.
Title A Kalman-Based Compensation Strategy for Platoons Subject to Data Loss: Numerical and Empirical Study Type
Year 2023 Publication Mathematics Abbreviated Journal Mathematics
Volume 11 Issue 5 Pages 1228
Keywords vehicle platoon; lossy communication; string stability; networked control systems; Kalman filtering
Abstract This article considers a homogeneous platoon with vehicles that communicate through channels prone to data loss. The vehicles use a predecessor-following topology, where each vehicle sends relevant data to the next, and data loss is modeled through a Bernoulli process. To address the lossy communication, we propose a strategy to estimate the missing data based on the Kalman filter with intermittent observations combined with a linear extrapolation stage. This strategy enables the followers to better deal with data dropouts. We compare this approach to one purely based on the linear extrapolation of previous data. The performance of both strategies is analyzed through Monte Carlo simulations and experiments in an ad hoc testbed, considering various data loss and transmission loss probabilities depending on the inter-vehicle distance. The results show that for the considered cases, the proposed strategy outperforms the linear extrapolation approach in terms of tracking and estimation error variances. Our results also show that the proposed strategy can achieve string stability for the mean and variance for both the tracking and estimation errors in scenarios where the basic extrapolation strategy cannot.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2227-7390 ISBN Medium
Area Expedition Conference
Notes WOS:000947806100001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1768
Permanent link to this record
 

 
Author Villenas, F.I.; Vargas, F.J.; Peters, A.A.
Title Exploring the Role of Sampling Time in String Stabilization for Platooning: An Experimental Case Study Type
Year 2023 Publication Mathematics Abbreviated Journal Mathematics
Volume 11 Issue 13 Pages 2923
Keywords vehicle platoon; string stability; discrete time; sampled-data systems
Abstract In this article, we investigate the behavior of vehicle platoons operating in a predecessor-following configuration, implemented through sampled-data control systems. Our primary focus is to examine the potential influence of the sampling time on the string stability of the platoon. To address this, we begin by designing a string-stable platoon in continuous time. Subsequently, we consider the controller discretization process and proceed to simulate and implement the designed control strategy on an experimental platform at a scaled-down level. Through experimental testing and some theoretical results, we analyze the effects of different sampling times on the string stability performance of the platoon. We observe that an inappropriate selection of the sampling time can lead to a degradation in string stability within the platoon, making the choice of the sampling time crucial in maintaining the desired string stability properties. These findings highlight the importance of carefully considering the sampling time in the implementation of control systems for platooning applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2227-7390 ISBN Medium
Area Expedition Conference
Notes WOS:001028186900001 Approved
Call Number UAI @ alexi.delcanto @ Serial 1844
Permanent link to this record