Records |
Author |
Aylwin, R.; Jerez-Hanckes, C.; Schwab, C.; Zech, J. |
Title |
Domain Uncertainty Quantification in Computational Electromagnetics |
Type |
|
Year |
2020 |
Publication |
Siam-Asa Journal On Uncertainty Quantification |
Abbreviated Journal |
SIAM-ASA J. Uncertain. Quantif. |
Volume |
8 |
Issue |
1 |
Pages |
301-341 |
Keywords |
computational electromagnetics; uncertainty quantification; finite elements; shape holomorphy; sparse grid quadrature; Bayesian inverse problems |
Abstract |
We study the numerical approximation of time-harmonic, electromagnetic fields inside a lossy cavity of uncertain geometry. Key assumptions are a possibly high-dimensional parametrization of the uncertain geometry along with a suitable transformation to a fixed, nominal domain. This uncertainty parametrization results in families of countably parametric, Maxwell-like cavity problems that are posed in a single domain, with inhomogeneous coefficients that possess finite, possibly low spatial regularity, but exhibit holomorphic parametric dependence in the differential operator. Our computational scheme is composed of a sparse grid interpolation in the high-dimensional parameter domain and an Hcurl -conforming edge element discretization of the parametric problem in the nominal domain. As a stepping-stone in the analysis, we derive a novel Strang-type lemma for Maxwell-like problems in the nominal domain, which is of independent interest. Moreover, we accommodate arbitrary small Sobolev regularity of the electric field and also cover uncertain isotropic constitutive or material laws. The shape holomorphy and edge-element consistency error analysis for the nominal problem are shown to imply convergence rates for multilevel Monte Carlo and for quasi-Monte Carlo integration, as well as sparse grid approximations, in uncertainty quantification for computational electromagnetics. They also imply expression rate estimates for deep ReLU networks of shape-to-solution maps in this setting. Finally, our computational experiments confirm the presented theoretical results. |
Address |
[Aylwin, Ruben] Pontificia Univ Catolica Chile, Sch Engn, Santiago 7820436, Chile, Email: rdaylwin@uc.cl; |
Corporate Author |
|
Thesis |
|
Publisher |
Siam Publications |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2166-2525 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000551383300011 |
Approved |
|
Call Number |
UAI @ eduardo.moreno @ |
Serial |
1207 |
Permanent link to this record |
|
|
|
Author |
Dölz, J.; Harbrecht, H.; Jerez-Hanckes, C.; Multerer M. |
Title |
Isogeometric multilevel quadrature for forward and inverse random acoustic scattering |
Type |
|
Year |
2022 |
Publication |
Computer Methods in Applied Mechanics and Engineering |
Abbreviated Journal |
Comput. Methods in Appl. Mech. Eng. |
Volume |
388 |
Issue |
|
Pages |
114242 |
Keywords |
Uncertainty quantification: Helmholtz scattering; Isogeometric Analysis; Boundary Integral Methods; Bayesian inversion; Multilevel quadrature |
Abstract |
We study the numerical solution of forward and inverse time-harmonic acoustic scattering problems by randomly shaped obstacles in three-dimensional space using a fast isogeometric boundary element method. Within the isogeometric framework, realizations of the random scatterer can efficiently be computed by simply updating the NURBS mappings which represent the scatterer. This way, we end up with a random deformation field. In particular, we show that it suffices to know the deformation field’s expectation and covariance at the scatterer’s boundary to model the surface’s Karhunen–Loève expansion. Leveraging on the isogeometric framework, we employ multilevel quadrature methods to approximate quantities of interest such as the scattered wave’s expectation and variance. By computing the wave’s Cauchy data at an artificial, fixed interface enclosing the random obstacle, we can also directly infer quantities of interest in free space. Adopting the Bayesian paradigm, we finally compute the expected shape and variance of the scatterer from noisy measurements of the scattered wave at the artificial interface. Numerical results for the forward and inverse problems validate the proposed approach. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0045-7825 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
|
Call Number |
UAI @ alexi.delcanto @ |
Serial |
1476 |
Permanent link to this record |
|
|
|
Author |
Escapil-Inchauspe, P.; Jerez-Hanckes, C. |
Title |
Helmholtz Scattering by Random Domains: First-Order Sparse Boundary Elements Approximation |
Type |
|
Year |
2020 |
Publication |
SIAM Journal of Scientific Computing |
Abbreviated Journal |
SIAM J. Sci. Comput. |
Volume |
42 |
Issue |
5 |
Pages |
A2561-A2592 |
Keywords |
Helmholtz equation; shape calculus; uncertainty quantification; boundary element method; combination technique |
Abstract |
We consider the numerical solution of time-harmonic acoustic scattering by obstacles with uncertain geometries for Dirichlet, Neumann, impedance, and transmission boundary conditions. In particular, we aim to quantify diffracted fields originated by small stochastic perturbations of a given relatively smooth nominal shape. Using first-order shape Taylor expansions, we derive tensor deterministic first-kind boundary integral equations for the statistical moments of the scattering problems considered. These are then approximated by sparse tensor Galerkin discretizations via the combination technique [M. Griebel, M. Schneider, and C. Zenger, A combination technique for the solution of sparse grid problems, in Iterative Methods in Linear Algebra, P. de Groen and P. Beauwens, eds., Elsevier, Amsterdam, 1992, pp. 263-281; H. Harbrecht, M. Peters, and M. Siebenmorgen, J. Comput. Phys., 252 (2013), pp. 128-141]. We supply extensive numerical experiments confirming the predicted error convergence rates with polylogarithmic growth in the number of degrees of freedom and accuracy in approximation of the moments. Moreover, we discuss implementation details such as preconditioning to finally point out further research avenues. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1064-8275 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
|
Call Number |
UAI @ eduardo.moreno @ |
Serial |
1205 |
Permanent link to this record |
|
|
|
Author |
Fuenzalida, C.; Jerez-Hanckes, C.; McClarren, R.G. |
Title |
Uncertainty Quantification For Multigroup Diffusion Equations Using Sparse Tensor Approximations |
Type |
|
Year |
2019 |
Publication |
Siam Journal On Scientific Computing |
Abbreviated Journal |
SIAM J. Sci. Comput. |
Volume |
41 |
Issue |
3 |
Pages |
B545-B575 |
Keywords |
multigroup diffusion equation; uncertainty quantification; sparse tensor approximation; finite element method |
Abstract |
We develop a novel method to compute first and second order statistical moments of the neutron kinetic density inside a nuclear system by solving the energy-dependent neutron diffusion equation. Randomness comes from the lack of precise knowledge of external sources as well as of the interaction parameters, known as cross sections. Thus, the density is itself a random variable. As Monte Carlo simulations entail intense computational work, we are interested in deterministic approaches to quantify uncertainties. By assuming as given the first and second statistical moments of the excitation terms, a sparse tensor finite element approximation of the first two statistical moments of the dependent variables for each energy group can be efficiently computed in one run. Numerical experiments provided validate our derived convergence rates and point to further research avenues. |
Address |
[Fuenzalida, Consuelo] Pontificia Univ Catolica Chile, Sch Engn, Santiago, Chile, Email: mcfuenzalida@uc.cl; |
Corporate Author |
|
Thesis |
|
Publisher |
Siam Publications |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1064-8275 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000473033300033 |
Approved |
|
Call Number |
UAI @ eduardo.moreno @ |
Serial |
1023 |
Permanent link to this record |
|
|
|
Author |
Ni, P.H.; Jerez, D.J.; Fragkoulis, V.C.; Faes, M.G.R.; Valdebenito, M.A.; Beer, M. |
Title |
Operator Norm-Based Statistical Linearization to Bound the First Excursion Probability of Nonlinear Structures Subjected to Imprecise Stochastic Loading |
Type |
|
Year |
2022 |
Publication |
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A-Civil Engineering |
Abbreviated Journal |
ASCE-ASME J. Risk Uncertain. Eng. Syst. A-Civ. Eng. |
Volume |
8 |
Issue |
1 |
Pages |
04021086 |
Keywords |
Uncertainty quantification; Imprecise probabilities; Operator norm theorem; Statistical linearization |
Abstract |
This paper presents a highly efficient approach for bounding the responses and probability of failure of nonlinear models subjected to imprecisely defined stochastic Gaussian loads. Typically, such computations involve solving a nested double-loop problem, where the propagation of the aleatory uncertainty has to be performed for each realization of the epistemic parameters. Apart from near-trivial cases, such computation is generally intractable without resorting to surrogate modeling schemes, especially in the context of performing nonlinear dynamical simulations. The recently introduced operator norm framework allows for breaking this double loop by determining those values of the epistemic uncertain parameters that produce bounds on the probability of failure a priori. However, the method in its current form is only applicable to linear models due to the adopted assumptions in the derivation of the involved operator norms. In this paper, the operator norm framework is extended and generalized by resorting to the statistical linearization methodology to |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2376-7642 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000742414100022 |
Approved |
|
Call Number |
UAI @ alexi.delcanto @ |
Serial |
1550 |
Permanent link to this record |