|   | 
Details
   web
Records
Author (up) Faes, M.G.R.; Valdebenito, M.A.; Yuan, X.K.; Wei, P.F.; Beer, M.
Title Augmented reliability analysis for estimating imprecise first excursion probabilities in stochastic linear dynamics Type
Year 2021 Publication Advances in Engineering Software Abbreviated Journal Adv. Eng. Softw.
Volume 155 Issue Pages 102993
Keywords FAILURE PROBABILITY; SYSTEMS SUBJECT; INTERVAL; QUANTIFICATION; DESIGN
Abstract Imprecise probability allows quantifying the level of safety of a system taking into account the effect of both aleatory and epistemic uncertainty. The practical estimation of an imprecise probability is usually quite demanding from a numerical viewpoint, as it is necessary to propagate separately both types of uncertainty, leading in practical cases to a nested implementation in the so-called double loop approach. In view of this issue, this contribution presents an alternative approach that avoids the double loop by replacing the imprecise probability problem by an augmented, purely aleatory reliability analysis. Then, with the help of Bayes' theorem, it is possible to recover an expression for the failure probability as an explicit function of the imprecise parameters from the augmented reliability problem, which ultimately allows calculating the imprecise probability. The implementation of the proposed framework is investigated within the context of imprecise first excursion probability estimation of uncertain linear structures subject to imprecisely defined stochastic quantities and crisp stochastic loads. The associated augmented reliability problem is solved within the context of Directional Importance Sampling, leading to an improved accuracy at reduced numerical costs. The application of the proposed approach is investigated by means of two examples. The results obtained indicate that the proposed approach can be highly efficient and accurate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0965-9978 ISBN Medium
Area Expedition Conference
Notes WOS:000649550900002 Approved
Call Number UAI @ alexi.delcanto @ Serial 1378
Permanent link to this record
 

 
Author (up) Yuan, X.K.; Liu, S.L.; Valdebenito, M.A.; Faes, M.G.R.; Jerez, D.J.; Jensen, H.A.; Beer, M.
Title Decoupled reliability-based optimization using Markov chain Monte Carlo in augmented space Type
Year 2021 Publication Advances in Engineering Software Abbreviated Journal Adv. Eng. Softw.
Volume 157 Issue Pages 103020
Keywords Reliability-based design optimization; Markov chain simulation; Failure probability function; Bayes' theorem
Abstract An efficient framework is proposed for reliability-based design optimization (RBDO) of structural systems. The RBDO problem is expressed in terms of the minimization of the failure probability with respect to design variables which correspond to distribution parameters of random variables, e.g. mean or standard deviation. Generally, this problem is quite demanding from a computational viewpoint, as repeated reliability analyses are involved. Hence, in this contribution, an efficient framework for solving a class of RBDO problems without even a single reliability analysis is proposed. It makes full use of an established functional relationship between the probability of failure and the distribution design parameters, which is termed as the failure probability function (FPF). By introducing an instrumental variability associated with the distribution design parameters, the target FPF is found to be proportional to a posterior distribution of the design parameters conditional on the occurrence of failure in an augmented space. This posterior distribution is derived and expressed as an integral, which can be estimated through simulation. An advanced Markov chain algorithm is adopted to efficiently generate samples that follow the aforementioned posterior distribution. Also, an algorithm that re-uses information is proposed in combination with sequential approximate optimization to improve the efficiency. Numeric examples illustrate the performance of the proposed framework.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0965-9978 ISBN Medium
Area Expedition Conference
Notes WOS:000653696200006 Approved
Call Number UAI @ alexi.delcanto @ Serial 1395
Permanent link to this record