|   | 
Details
   web
Record
Author (up) Marin, M.; Perez-Pantoja, D.; Donoso, R.; Wray, V.; Gonzalez, B.; Pieper, D.H.
Title Modified 3-Oxoadipate Pathway for the Biodegradation of Methylaromatics in Pseudomonas reinekei MT1 Type
Year 2010 Publication Journal Of Bacteriology Abbreviated Journal J. Bacteriol.
Volume 192 Issue 6 Pages 1543-1552
Keywords
Abstract Catechols are central intermediates in the metabolism of aromatic compounds. Degradation of 4-methyl-catechol via intradiol cleavage usually leads to the formation of 4-methylmuconolactone (4-ML) as a dead-end metabolite. Only a few microorganisms are known to mineralize 4-ML. The mml gene cluster of Pseudomonas reinekei MT1, which encodes enzymes involved in the metabolism of 4-ML, is shown here to encode 10 genes found in a 9.4-kb chromosomal region. Reverse transcription assays revealed that these genes form a single operon, where their expression is controlled by two promoters. Promoter fusion assays identified 4-methyl-3-oxoadipate as an inducer. Mineralization of 4-ML is initiated by the 4-methylmuconolactone methylisomerase encoded by mmlI. This reaction produces 3-ML and is followed by a rearrangement of the double bond catalyzed by the methylmuconolactone isomerase encoded by mmlJ. Deletion of mmlL, encoding a protein of the metallo-beta-lactamase superfamily, resulted in a loss of the capability of the strain MT1 to open the lactone ring, suggesting its function as a 4-methyl-3-oxoadipate enol-lactone hydrolase. Further metabolism can be assumed to occur by analogy with reactions known from the 3-oxoadipate pathway. mmlF and mmlG probably encode a 4-methyl-3-oxoadipyl-coenzyme A (CoA) transferase, and the mmlC gene product functions as a thiolase, transforming 4-methyl-3-oxoadipyl-CoA into methylsuccinyl-CoA and acetyl-CoA, as indicated by the accumulation of 4-methyl-3-oxoadipate in the respective deletion mutant. Accumulation of methylsuccinate by an mmlK deletion mutant indicates that the encoded acetyl-CoA hydrolase/transferase is crucial for channeling methylsuccinate into the central metabolism.
Address [Marin, Macarena; Pieper, Dietmar H.] Helmholtz Zentrum Infekt Forsch, Dept Microbial Pathogenesis, D-38124 Braunschweig, Germany, Email: dpi@helmholtz-hzi.de
Corporate Author Thesis
Publisher Amer Soc Microbiology Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9193 ISBN Medium
Area Expedition Conference
Notes WOS:000274891300009 Approved
Call Number UAI @ eduardo.moreno @ Serial 84
Permanent link to this record