|   | 
Details
   web
Records
Author Asenjo, F.A.; Erices, C.; Gomberoff, A.; Hojman, S.A.; Montecinos, A.
Title Differential geometry approach to asymmetric transmission of light Type
Year 2017 Publication Optics Express Abbreviated Journal Opt. Express
Volume 25 Issue 22 Pages 26405-26416
Keywords
Abstract In the last ten years, the technology of differential geometry, ubiquitous in gravitational physics, has found its place in the field of optics. It has been successfully used in the design of optical metamaterials through a technique now known as “transformation optics.” This method, however, only applies for the particular class of metamaterials known as impedance matched, that is, materials whose electric permittivity is equal to their magnetic permeability. In that case, the material may be described by a spacetime metric. In the present work we will introduce a generalization of the geometric methods of transformation optics to situations in which the material is not impedance matched. In such situations, the material -or more precisely, its constitutive tensor-will not be described by a metric only. We bring in a second tensor, with the local symmetries of the Weyl tensor, the “W-tensor.” In the geometric optics approximation we show how the properties of the W-tensor are related to the asymmetric transmission of the material. We apply this feature to the design of a particularly interesting set of asymmetric materials. These materials are birefringent when light rays approach the material in a given direction, but behave just like vacuum when the rays have the opposite direction with the appropriate polarization (or, in some cases, independently of the polarization). (C) 2017 Optical Society of America
Address [Asenjo, Felipe A.; Gomberoff, Andres] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Av Diagonal Torres 2640, Santiago, Chile, Email: andres.gomberoff@uai.cl
Corporate Author Thesis
Publisher Optical Soc Amer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes WOS:000413995000004 Approved
Call Number UAI @ eduardo.moreno @ Serial 798
Permanent link to this record
 

 
Author Slepneva, S.; O'Shaughnessy, B.; Vladimirov, A.G.; Rica, S.; Viktorov, E.A.; Huyet, G.
Title Convective Nozaki-Bekki holes in a long cavity OCT laser Type
Year 2019 Publication Optics Express Abbreviated Journal Opt. Express
Volume 27 Issue 11 Pages 16395-16404
Keywords
Abstract We show, both experimentally and theoretically, that the loss of coherence of a long cavity optical coherence tomography (OCT) laser can be described as a transition from laminar to turbulent flows. We demonstrate that in this strongly dissipative system, the transition happens either via an absolute or a convective instability depending on the laser parameters. In the latter case, the transition occurs via formation of localised structures in the laminar regime, which trigger the formation of growing and drifting puffs of turbulence. Experimentally, we demonstrate that these turbulent bursts arc seeded by appearance of Nozaki-Bekki holes, characterised by the zero field amplitude and pi phase jumps. Our experimental results are supported with numerical simulations based on the delay differential equations model. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Address [Slepneva, Svetlana; Huyet, Guillaume] Univ Cote Azur, CNRS, INPHINY, Paris, France, Email: svetlana.slepneva@gmail.com
Corporate Author Thesis
Publisher Optical Soc Amer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes WOS:000469227200106 Approved
Call Number UAI @ eduardo.moreno @ Serial 1031
Permanent link to this record