|   | 
Details
   web
Records
Author Asenjo, F.A.; Hojman, S.A.; Moya-Cessa, H.M.; Soto-Eguibar, F.
Title Supersymmetric relativistic quantum mechanics in time-domain Type
Year 2022 Publication Physics Letters A Abbreviated Journal Phys. Lett. A
Volume 450 Issue Pages 128371
Keywords Supersymmetry; Time-domain; Neutrino oscillation
Abstract A supersymmetric relativistic quantum theory in the temporal domain is developed for bi-spinor fields satisfying the Dirac equation. The simplest time-domain supersymmetric theory can be postulated for fields with time-dependent mass, showing an equivalence with the bosonic supersymmetric theory in time-domain. Solutions are presented and they are used to produce probability oscillations between mass states. As an application of this idea, we study the two-neutrino oscillation problem, showing that flavour state oscillations may emerge from the supersymmetry originated by the time-dependence of the unique mass of the neutrino.(c) 2022 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601 ISBN Medium
Area Expedition Conference
Notes WOS:000860777300004 Approved
Call Number UAI @ alexi.delcanto @ Serial 1643
Permanent link to this record
 

 
Author Asenjo, F.A.; Hojman, S.A.; Villegas-Martinez, B.M.; Moya-Cessa, H.M.; Soto-Eguibar, F.
Title Supersymmetric behavior of polarized electromagnetic waves in anisotropic media Type
Year 2024 Publication Modern Physics Letters A Abbreviated Journal Mod. Phys. Lett. A
Volume 39 Issue 06 Pages 2450013
Keywords Electromagnetic waves; supersymmetry; anisotropic media
Abstract A medium with specific anisotropic refractive indices can induce a supersymmetric behavior in the propagation of polarized electromagnetic waves, in an analog fashion to a quantum mechanical system. The polarizations of the wave are the ones which behave as superpartners from each other. For this to happen, the anisotropy of the medium must be transverse to the direction of propagation of the wave, with different refractive indices along the direction of each polarization, being in this way a biaxial medium. These refractive indices must be complex and follow a very specific relation in order to trigger the supersymetric response of the electromagnetic wave, each of them with spatial dependence on the longitudinal (propagation) direction of the wave. In this form, in these materials, different polarized light can be used to test supersymmetry in an optical fashion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-7323 ISBN Medium
Area Expedition Conference
Notes WOS:001183591300003 Approved
Call Number UAI @ alexi.delcanto @ Serial 1969
Permanent link to this record
 

 
Author Goles, E.; Tsompanas, M.A.; Adamatzky, A.; Tegelaar, M.; Wosten, H.A.B.; Martinez, G.J.
Title Computational universality of fungal sandpile automata Type
Year 2020 Publication Physics Letters A Abbreviated Journal Phys. Lett. A
Volume 384 Issue 22 Pages 8 pp
Keywords Fungi; Sandpile automata; Computational universality
Abstract Hyphae within the mycelia of the ascomycetous fungi are compartmentalised by septa. Each septum has a pore that allows for inter-compartmental and inter-hyphal streaming of cytosol and even organelles. The compartments, however, have special organelles, Woronin bodies, that can plug the pores. When the pores are blocked, no flow of cytoplasm takes place. Inspired by the controllable compartmentalisation within the mycelium of the ascomycetous fungi we designed two-dimensional fungal automata. A fungal automaton is a cellular automaton where communication between neighbouring cells can be blocked on demand. We demonstrate computational universality of the fungal automata by implementing sandpile cellular automata circuits there. We reduce the Monotone Circuit Value Problem to the Fungal Automaton Prediction Problem. We construct families of wires, cross-overs and gates to prove that the fungal automata are P-complete. (C) 2020 Elsevier B.V. All rights reserved.
Address [Goles, Eric; Tsompanas, Michail-Antisthenis; Adamatzky, Andrew; Martinez, Genaro J.] Univ West England, Unconvent Comp Lab, Bristol, Avon, England, Email: andrew.adamatzky@uwe.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601 ISBN Medium
Area Expedition Conference
Notes WOS:000537033500017 Approved
Call Number UAI @ eduardo.moreno @ Serial 1194
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title A new approach to solve the one-dimensional Schrodinger equation using a wavefunction potential Type
Year 2020 Publication Physics Letters A Abbreviated Journal Phys. Lett. A
Volume 384 Issue 36 Pages 7 pp
Keywords Schrodinger equation; New exact solutions; Accelerating wavepackets; Bohm potential
Abstract A new approach to find exact solutions to one-dimensional quantum mechanical systems is devised. The scheme is based on the introduction of a potential function for the wavefunction, and the equation it satisfies. We recover known solutions as well as to get new ones for both free and interacting particles with wavefunctions having vanishing and non-vanishing Bohm potentials. For most of the potentials, no solutions to the Schrodinger equation produce a vanishing Bohm potential. A (large but) restricted family of potentials allows the existence of particular solutions for which the Bohm potential vanishes. This family of potentials is determined, and several examples are presented. It is shown that some quantum, such as accelerated Airy wavefunctions, are due to the presence of non-vanishing Bohm potentials. New examples of this kind are found and discussed. (C) 2020 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601 ISBN Medium
Area Expedition Conference
Notes Approved
Call Number UAI @ alexi.delcanto @ Serial 1271
Permanent link to this record
 

 
Author Hojman, S.A.; Asenjo, F.A.
Title Dual wavefunctions in two-dimensional quantum mechanics Type
Year 2020 Publication Physics Letters A Abbreviated Journal Phys. Lett. A
Volume 384 Issue 13 Pages 5 pp
Keywords Schrodinger equation; Dual solution; Bohm potential; Two-dimensions; Optics
Abstract It is shown that the Schrodinger equation for a large family of pairs of two-dimensional quantum potentials possess wavefunctions for which the amplitude and the phase are interchangeable, producing two different solutions which are dual to each other. This is a property of solutions with vanishing Bohm potential. These solutions can be extended to three-dimensional systems. We explicitly calculate dual solutions for physical systems, such as the repulsive harmonic oscillator and the two-dimensional hydrogen atom. These dual wavefunctions are also solutions of an analogue optical system in the eikonal limit. In this case, the potential is related to the refractive index, allowing the study of this two-dimensional dual wavefunction solutions with an optical (analogue) system. (C) 2020 Elsevier B.V. All rights reserved.
Address [Hojman, Sergio A.] Univ Adolfo Ibanez, Dept Ciencias, Fac Artes Liberales, Santiago 7491169, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601 ISBN Medium
Area Expedition Conference
Notes WOS:000525434900002 Approved
Call Number UAI @ eduardo.moreno @ Serial 1152
Permanent link to this record
 

 
Author Hojman, S.A.; Gamboa, J.; Mendez, F.
Title Dynamics Determines Geometry Type
Year 2012 Publication Modern Physics Letters A Abbreviated Journal Mod. Phys. Lett. A
Volume 27 Issue 33 Pages 14 pp
Keywords Classical and quantum mechanics; non-commutative geometry
Abstract The inverse problem of calculus of variations and s-equivalence are re-examined by using results obtained from non-commutative geometry ideas. The role played by the structure of the modified Poisson brackets is discussed in a general context and it is argued that classical s-equivalent systems may be non-equivalent at the quantum mechanical level. This last fact is explicitly discussed comparing different approaches to deal with the NairPolychronakos oscillator.
Address [Gamboa, J.; Mendez, F.] Univ Santiago Chile, Dept Fis, Santiago, Chile, Email: sergio.hojman@uai.cl;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-7323 ISBN Medium
Area Expedition Conference
Notes WOS:000310278700003 Approved
Call Number UAI @ eduardo.moreno @ Serial 249
Permanent link to this record