toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) del Rio, A.V.; Buys, B.; Campos, J.L.; Mendez, R.; Mosquera-Corral, A. pdf  doi
openurl 
  Title Optimizing upflow velocity and calcium precipitation in denitrifying granular systems Type
  Year 2015 Publication Process Biochemistry Abbreviated Journal Process Biochem.  
  Volume 50 Issue 10 Pages 1656-1661  
  Keywords Calcium; Denitrification; Granule; Upflow velocity  
  Abstract The denitrification process was studied in two granular biomass denitrifying reactors (USB1 and USB2). In USB1 large quantities of biomass were accumulated (9.5 gVSS L-1) allowing for the treatment of high nitrogen loads (3.5 g NO3--N L-1 d(-1)). As the biomass granulation process is not immediate the effects of different upflow velocities (0.12-5.5 m h(-1)) and calcium contents (5-200 mg Ca2+ L-1) were studied in order to speed up the process. Obtained results indicate that the optimum values for these parameters, which allow for the stable operation of USB1, are of 0.19 m h(-1) and 60 mg Ca2+ L-1. Then these optimum conditions were applied to USB2 where the effects of concentrations from 335 to 1000 mg NO3--N L-1 were tested. In these conditions nitrate concentrations of 1000 mg NO3--N L-1 are required for denitrifying granular biomass formation. Summarizing denitrifying granules can be formed at low upflow velocities and in hard or extremely hard water composition conditions if sufficient high nitrogen loads are treated. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address [Val del Rio, A.; Buys, B.; Campos, J. L.; Mendez, R.; Mosquera-Corral, A.] Univ Santiago de Compostela, Inst Technol, Dept Chem Engn, Santiago De Compostela 15782, Galicia, Spain, Email: mangeles.val@usc.es;  
  Corporate Author Thesis  
  Publisher Elsevier Sci Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-5113 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000361775400022 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 526  
Permanent link to this record
 

 
Author (up) Morales, N.; del Rio, A.V.; Vazquez-Padin, J.R.; Mendez, R.; Campos, J.L.; Mosquera-Corral, A. pdf  doi
openurl 
  Title The granular biomass properties and the acclimation period affect the partial nitritation/anammox process stability at a low temperature and ammonium concentration Type
  Year 2016 Publication Process Biochemistry Abbreviated Journal Process Biochem.  
  Volume 51 Issue 12 Pages 2134-2142  
  Keywords Anammox; AOB; Granules; Nitrogen; NOB; Partial nitritation  
  Abstract Extensive research on the anammox-based processes under mainstream conditions is currently in progress. Most studies have used a long acclimation period for the partial nitritation-anammox (PN-An) sludge at a low temperature and ammonium concentration. However, in this study, the results demonstrated that PN-An granular biomass produced under sidestream conditions (30 degrees C and 1000 mg NH4+-N/L) can operate at 15 degrees C and 50 mg NH4+-N/L without acclimation. The nitrogen removal efficiency was 70% and was stable for 60 days. The long-termoperation of the system with progressive adaptation provided important information for process optimization. Control of the dissolved oxygen (DO) concentration was crucial to maintain the balance between ammonia oxidizing bacteria (AOB) and anammox bacteria activities. A calculation of the oxygen penetration depth inside the granules is proposed to estimate an adequate DO level, which allows for the definition of the aerobic and anoxic zones that depend on the temperature, the size distribution and the granule density. However, the development of NOB was difficult to avoid with DO control alone. The selective washing-out of the floccular biomass, which contains mainly NOB, is proposed, leaving the granular fraction with the AOB and anammox bacteria in the system. (C) 2016 Published by Elsevier Ltd.  
  Address [Morales, Nicolas; del Rio, Angeles Val; Mendez, Ramon; Campos, Jose L.; Mosquera-Corral, Anuska] Univ Santiago de Compostela, Inst Technol, Dept Chem Engn, E-15705 Santiago De Compostela, Spain, Email: nicolas.morales@usc.es;  
  Corporate Author Thesis  
  Publisher Elsevier Sci Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-5113 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000390733500029 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 685  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: