|   | 
Details
   web
Records
Author (up) Dang, C.; Wei, P.F.; Faes, M.G.R.; Valdebenito, M.A.; Beer, M.
Title Parallel adaptive Bayesian quadrature for rare event estimation Type
Year 2022 Publication Reliability Engineering & System Safety Abbreviated Journal Reliab. Eng. Syst. Saf.
Volume 225 Issue Pages 108621
Keywords Reliability analysis; Gaussian process; Numerical uncertainty; Bayesian quadrature; Parallel computing
Abstract Various numerical methods have been extensively studied and used for reliability analysis over the past several decades. However, how to understand the effect of numerical uncertainty (i.e., numerical error due to the discretization of the performance function) on the failure probability is still a challenging issue. The active learning probabilistic integration (ALPI) method offers a principled approach to quantify, propagate and reduce the numerical uncertainty via computation within a Bayesian framework, which has not been fully investigated in context of probabilistic reliability analysis. In this study, a novel method termed `Parallel Adaptive Bayesian Quadrature' (PABQ) is proposed on the theoretical basis of ALPI, and is aimed at broadening its scope of application. First, the Monte Carlo method used in ALPI is replaced with an importance ball sampling technique so as to reduce the sample size that is needed for rare failure event estimation. Second, a multi-point selection criterion is proposed to enable parallel distributed processing. Four numerical examples are studied to demonstrate the effectiveness and efficiency of the proposed method. It is shown that PABQ can effectively assess small failure probabilities (e.g., as low as 10(-7)) with a minimum number of iterations by taking advantage of parallel computing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0951-8320 ISBN Medium
Area Expedition Conference
Notes WOS:000809316300008 Approved
Call Number UAI @ alexi.delcanto @ Serial 1607
Permanent link to this record
 

 
Author (up) Leiva, V.; Ruggeri, F.; Saulo, H.; Vivanco, J.F.
Title A methodology based on the Birnbaum-Saunders distribution for reliability analysis applied to nano-materials Type
Year 2017 Publication Reliability Engineering & System Safety Abbreviated Journal Reliab. Eng. Syst. Saf.
Volume 157 Issue Pages 192-201
Keywords Bayesian analysis; Hardness data; Markov chain Monte Carlo method; R software
Abstract The Birnbaum-Saunders distribution has been widely studied and applied to reliability studies. This paper proposes a novel use of this distribution to analyze the effect on hardness, a material mechanical property, when incorporating nano-particles inside a polymeric bone cement. A plain variety and two modified types of mesoporous silica nano-particles are considered. In biomaterials, one can study the effect of nano-particles on mechanical response reliability. Experimental data collected by the authors from a micro-indentation test about hardness of a commercially available polymeric bone cement are analyzed. Hardness is modeled with the Birnbaum-Saunders distribution and Bayesian inference is performed to derive a methodology, which allows us to evaluate the effect of using nano-particles at different loadings by the R software. (C) 2016 Elsevier Ltd. All rights reserved.
Address [Leiva, Victor; Vivanco, Juan F.] Univ Adolfo Ibanez, Fac Sci & Engn, Vina del Mar, Chile, Email: victorleivictorleivasanchez@gmail.com
Corporate Author Thesis
Publisher Elsevier Sci Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0951-8320 ISBN Medium
Area Expedition Conference
Notes WOS:000387195700017 Approved
Call Number UAI @ eduardo.moreno @ Serial 676
Permanent link to this record
 

 
Author (up) Valdebenito, M.A.; Wei, P.F.; Song, J.W.; Beer, M.; Broggi, M.
Title Failure probability estimation of a class of series systems by multidomain Line Sampling Type
Year 2021 Publication Reliability Engineering & System Safety Abbreviated Journal Reliab. Eng. Syst. Saf.
Volume 213 Issue Pages 107673
Keywords Line sampling; Multidomain; Linear performance function; Failure probability; Series system
Abstract This contribution proposes an approach for the assessment of the failure probability associated with a particular class of series systems. The type of systems considered involves components whose response is linear with respect to a number of Gaussian random variables. Component failure occurs whenever this response exceeds prescribed deterministic thresholds. We propose multidomain Line Sampling as an extension of the classical Line Sampling to work with a large number of components at once. By taking advantage of the linearity of the performance functions involved, multidomain Line Sampling explores the interactions that occur between failure domains associated with individual components in order to produce an estimate of the failure probability. The performance and effectiveness of multidomain Line Sampling is illustrated by means of two test problems and an application example, indicating that this technique is amenable for treating problems comprising both a large number of random variables and a large number of components.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0951-8320 ISBN Medium
Area Expedition Conference
Notes WOS:000663910500016 Approved
Call Number UAI @ alexi.delcanto @ Serial 1430
Permanent link to this record
 

 
Author (up) Yuan, X.K.; Faes, M.G.R.; Liu, S.L.; Valdebenito, M.A.; Beer, M.
Title Efficient imprecise reliability analysis using the Augmented Space Integral Type
Year 2021 Publication Reliability Engineering & System Safety Abbreviated Journal Reliab. Eng. Syst. Saf.
Volume 210 Issue Pages 107477
Keywords Imprecise reliability analysis; Simulation-based method; Interval variable; Augmented space
Abstract This paper presents an efficient approach to compute the bounds on the reliability of a structure subjected to uncertain parameters described by means of imprecise probabilities. These imprecise probabilities arise from epistemic uncertainty in the definition of the hyper-parameters of a set of random variables that describe aleatory uncertainty in some of the structure's properties. Typically, such calculation involves the solution of a so-called double-loop problem, where a crisp reliability problem is repeatedly solved to determine which realization of the epistemic uncertainties yields the worst or best case with respect to structural safety. The approach in this paper aims at decoupling this double loop by virtue of the Augmented Space Integral. The core idea of the method is to infer a functional relationship between the epistemically uncertain hyper-parameters and the probability of failure. Then, this functional relationship can be used to determine the best and worst case behavior with respect to the probability of failure. Three case studies are included to illustrate the effectiveness and efficiency of the developed methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0951-8320 ISBN Medium
Area Expedition Conference
Notes WOS:000663909400008 Approved
Call Number UAI @ alexi.delcanto @ Serial 1432
Permanent link to this record
 

 
Author (up) Zhou, C.C.; Zhang, H.L.; Valdebenito, M.A.; Zhao, H.D.
Title A general hierarchical ensemble-learning framework for structural reliability analysis Type
Year 2022 Publication Reliability Engineering & System Safety Abbreviated Journal Reliab. Eng. Syst. Saf.
Volume 225 Issue Pages 108605
Keywords Reliability analysis; Ensemble-learning; Surrogate model; Performance function; Limit state surface
Abstract Existing ensemble-learning methods for reliability analysis are usually developed by combining ensemble learning with a learning function. A commonly used strategy is to construct the initial training set and the test set in advance. The training set is used to train the initial ensemble model, while the test set is adopted to allocate weight factors and check the convergence criterion. Reliability analysis focuses more on the local prediction accuracy near the limit state surface than the global prediction accuracy in the entire space. However, samples in the initial training set and the test set are generally randomly generated, which will result in the learning function failing to find the real ???best??? update samples and the allocation of weight factors may be suboptimal or even unreasonable. These two points have a detrimental impact on the overall performance of the ensemble model. Thus, we propose a general hierarchical ensemble-learning framework (ELF) for reliability analysis, which consists of two-layer models and three different phases. A novel method called CESM-ELF is proposed by embedding the classical ensemble of surrogate models (CESM) in the proposed ELF. Four examples are investigated to show that CESM-ELF outperforms CESM in prediction accuracy and is more efficient in some cases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0951-8320 ISBN Medium
Area Expedition Conference
Notes WOS:000809659300003 Approved
Call Number UAI @ alexi.delcanto @ Serial 1597
Permanent link to this record