toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) del Rio, A.V.; Campos, J.L.; Da Silva, C.; Pedrouso, A.; Mosquera-Corral, A. pdf  doi
openurl 
  Title Determination of the intrinsic kinetic parameters of ammonia-oxidizing and nitrite-oxidizing bacteria in granular and flocculent sludge Type
  Year 2019 Publication Separation And Purification Technology Abbreviated Journal Sep. Purif. Technol.  
  Volume 213 Issue Pages 571-577  
  Keywords Ammonia oxidizing bacteria; Flocs; Granules; Kinetics; Monod; Nitrite oxidizing bacteria  
  Abstract The different oxygen affinities of ammonia-oxidizing (AOB) and nitrite-oxidizing bacteria (NOB) are often used to define the operational strategy to achieve partial nitritation (PN) required before the anammox (AMX) process. For this purpose, apparent kinetic parameters are mainly used in the case of granular sludge, which can lead to errors when defining the operational conditions to obtain only nitritation (avoiding nitratation). In the present study, a mathematical methodology is proposed to determine the intrinsic kinetic parameters of AOB and NOB in granular sludge based on data obtained by respirometric assays. Additionally, the oxygen affinity constant (K-O2) and maximum specific rate (r(max)) of flocculent and granular sludge sample, produced under mainstream and sidestream conditions were determined at various temperatures (15, 20 and 30 degrees C). The results show that for granules, the intrinsic K-O2 and r(max) values were lower and higher, respectively, than the apparent values. Furthermore, the K-O2 values for flocs and granules at all of the tested temperatures were lower for NOB than for AOB. The values obtained for the kinetic parameters indicated that it is impossible to maintain partial nitritation by only controlling the dissolved oxygen concentration.  
  Address [del Rio, Angeles Val; Pedrouso, Alba; Mosquera-Corral, Anuska] Univ Santiago de Compostela, Dept Chem Engn, Sch Engn, E-15705 Santiago De Compostela, Spain, Email: mangeles.val@usc.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1383-5866 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000457657200054 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 977  
Permanent link to this record
 

 
Author (up) Giustinianovich, E.A.; Campos, J.L.; Roeckel, M.D. pdf  doi
openurl 
  Title The presence of organic matter during autotrophic nitrogen removal: Problem or opportunity? Type
  Year 2016 Publication Separation And Purification Technology Abbreviated Journal Sep. Purif. Technol.  
  Volume 166 Issue Pages 102-108  
  Keywords Anammox; Ammonia oxidation; Heterotrophic denitrification; Nitrogen removal; SNAD  
  Abstract The simultaneous nitrification, Anammox and denitrification (SNAD) process discovered six years ago is an adaptation of the autotrophic denitrification process that allows for treating nitrogen-rich wastewater streams with moderate amounts of organic carbon. Several authors have noted that it is possible to utilize organic carbon to promote nitrogen removal via the action of denitrifying microorganisms, which can remove the remnant nitrate produced by Anammox bacteria. Thus, SNAD systems can achieve nitrogen removal efficiencies higher than 89%, which is what is expected under autotrophic conditions. Three bacterial groups are responsible for SNAD reactions: ammonium-oxidizing bacteria (AOB), anaerobic ammonium-oxidizing bacteria (AnAOB) and heterotrophic bacteria (HB). Because HB will compete with AOB and AnAOB for oxygen and nitrite, respectively, the system should be operated in such way that a balance among the different bacterial populations is achieved. Here, the results reported in the literature are analyzed to define suitable characteristics of effluents for treatment and operational conditions to allow the SNAD process to be carried out with different types of technologies. (C) 2016 Elsevier B.V. All rights reserved.  
  Address [Giustinianovich, Elisa A.; Roeckel, Marlene D.] Univ Concepcion, Dept Chem Engn, Casilla 160-C, Concepcion, Chile, Email: mroeckel@udec.cl  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1383-5866 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376834400013 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 827  
Permanent link to this record
 

 
Author (up) Pedrouso, A.; Aiartza, I.; Morales, N.; Vazquez-Padin, J.R.; Rogalla, F.; Campos, J.L.; Mosquera-Corral, A.; del Rio, A.V. pdf  doi
openurl 
  Title Pilot-scale ELAN (R) process applied to treat primary settled urban wastewater at low temperature via partial nitritation-anammox processes Type
  Year 2018 Publication Separation And Purification Technology Abbreviated Journal Sep. Purif. Technol.  
  Volume 200 Issue Pages 94-101  
  Keywords Ananunox; Autotrophic nitrogen removal; Granular biomass; Mainstream; Partial nitritation  
  Abstract A single stage partial nitritation and anammox granular pilot scale reactor (600 L) was operated to treat primary settled sewage in an urban wastewater treatment plant. The fed wastewater contained low total nitrogen concentrations of 6-25 mg TN/L and the system operated without temperature control ranging from 18 to 12 degrees C. A control strategy, based on the pH value, was applied to stop the aeration supply. The pH set-point was fixed at 6.0 and allowed obtaining a total nitrogen removal efficiency approximately of 50% treating a load of 67 mg TN/(L.d) without the addition of any chemicals. Although nitrite oxidizing bacteria were present in the inoculated sludge, when the pH-based control was implemented (day 30) the ammonium oxidation was favored compared to the nitrite oxidation activity. Then, the system operated stable the rest of the operational period (days 30-94) despite the presence of organic matter in the wastewater and the high variability of nitrogen load and temperature during the operation. Nitrogen was autotrophically removed accomplishing the stringent discharge limits (10 mg TN/L) and nitrate concentrations in the effluent lower than 3 mg NO3--N/L. Both biomass concentration and granules size increased during the operational period indicating the growth of the biomass inside the reactor and therefore the potential treatment capacity.  
  Address [Pedrouso, Alba; Aiartza, Irati; Mosquera-Corral, Anuska; Val del Rio, Angeles] Univ Santiago de Compostela, Sch Engn, Dept Chem Engn, E-15705 Santiago De Compostela, Spain, Email: alba.pedrouso@usc.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1383-5866 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000431157200012 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 855  
Permanent link to this record
 

 
Author (up) Pedrouso, A.; del Rio, A.V.; Morales, N.; Vazquez-Padin, J.R.; Campos, J.L.; Mendez, R.; Mosquera-Corral, A. pdf  doi
openurl 
  Title Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions Type
  Year 2017 Publication Separation And Purification Technology Abbreviated Journal Sep. Purif. Technol.  
  Volume 186 Issue Pages 55-62  
  Keywords Ammonium oxidizing bacteria; Flocculent sludge; Free nitrous acid; Mainstream; Nitrite oxidizing bacteria; Partial nitritation  
  Abstract The application of autotrophic nitrogen removal processes in the main line of wastewater treatment plants will contribute to achieve its self-energy-sufficiency. However, the effective suppression of nitrite oxidizing bacteria (NOB) activity at the conditions of low temperature and low ammonium concentration (mainstream conditions) was identified as one of the main bottlenecks. In this study, stable partial nitritation at 16 degrees C and 50 mg NH4+-N/L was achieved maintaining inside the reactor free nitrous acid (FNA) concentrations inhibitory for NOB (>0.02 mg HNO2-N/L), without dissolved oxygen concentration control, The FNA inhibitory concentration was generated by the partial nitritation process, and its stimulation was studied with two different inhibitors: sodium azide and nitrite. The microbiological analysis revealed that, throughout the operational period with inhibitory FNA levels, the NOB populations (dominated by Nitrospira) were effectively washed out from the reactor. This is an advantage that allowed maintaining a good stability of the process, even when the FNA concentration was not enough to inhibit the NOB, taking about 40 days to develop significant activity. The observed delay on the NOB development is expected to enable the establishment of corrective actions to avoid the partial nitritation destabilization. The use of the FNA to achieve a stable partial nitritation process is recommended to profit from the natural pH decrease associated to the nitritation process and from its favoured accumulation at low temperatures as those from the mainstream. In this research study an analysis about the influence of ammonium and alkalinity concentrations was also performed to know in which scenarios the FNA inhibitory concentration can be achieved. (C) 2017 Elsevier B.V. All rights reserved.  
  Address [Pedrouso, Alba; del Rio, Angeles Val; Mendez, Ramon; Mosquera-Corral, Anuska] Univ Santiago de Compostela, Sch Engn, Dept Chem Engn, E-15705 Santiago De Compostela, Spain, Email: alba.pedrouso@usc.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1383-5866 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406730700007 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 755  
Permanent link to this record
 

 
Author (up) Pichel, A.; Moreno, R.; Figueroa, M.; Campos, J.L.; Mendez, R.; Mosquera-Corral, A.; del Rio, A.V. doi  openurl
  Title How to cope with NOB activity and pig manure inhibition in a partial nitritation-anammox process? Type
  Year 2019 Publication Separation And Purification Technology Abbreviated Journal Sep. Purif. Technol.  
  Volume 212 Issue Pages 396-404  
  Keywords Anammox; Pig manure; Inhibition; Nitrite oxidizers (NOB); Dissolved oxygen control  
  Abstract The treatment of pig manure can be performed by anaerobic digestion to diminish the organic matter content and produce biogas, and the resulting digestate has to be subsequently treated for the removal of nitrogenous compounds. The partial nitritation-anammox (PN-AMX) process constitutes an interesting alternative. In the present study, three different short experiments were initially performed to study the influence of nitrite oxidizing bacteria (NOB) present in the inoculum and the pig manure composition over the start-up of the PN-AMX process. The presence of NOB in the inoculum showed to be more crucial than the available anammox activity for a good performance of the PN-AMX process. Batch activity experiments showed a reduction of at least 44.4% in the maximum specific anammox activity due to the pig manure, probably owed to its conductivity (between 6 and 8 mS/cm). In the subsequent long-term operation of the PN-AMX process with non-diluted pre-treated pig manure, the NOB were successfully limited for DO concentrations of 0.1 mg O-2/L, and a nitrogen removal rate (NRR) of 0.1 g N/(L.d) was achieved despite the presence of significant NOB activity in the start-up. A strict control of the DO concentration, with an optimal range of 0.07-0.10 mg O-2/L, was fundamental to balance the removal of nitrogen by PN-AMX and prevent NOB activity. The presence of organic matter, with a ratio sCOD/N in the influent between 0.18 and 1.14 g/g, did not hinder the PN-AMX process, and the contribution of heterotrophic denitrification to the removal of nitrogen was less than 10%.  
  Address [Pichel, Andres; Figueroa, Monica; Mendez, Ramon; Mosquera-Corral, Anuska; Val del Rio, Angeles] Univ Santiago de Compostela, Sch Engn, Dept Chem Engn, E-15705 Santiago De Compostela, Spain, Email: andres.gutierrez.pichel@usc.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1383-5866 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000457814700044 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 1039  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: