toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Mancini, L.; Sarkis, P.; Henning, T.; Bakos, G.A.; Bayliss, D.; Bento, J.; Bhatti, W.; Brahm, R.; Csubry, Z.; Espinoza, N.; Hartman, J.; Jordan, A.; Penev, K.; Rabus, M.; Suc, V.; de Val-Borro, M.; Zhou, G.; Chen, G.; Damasso, M.; Southworth, J.; Tan, T.G. doi  openurl
  Title The highly inflated giant planet WASP-174b Type Journal Article
  Year 2020 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 633 Issue Pages 12 pp  
  Keywords planetary systems; stars: fundamental parameters; stars: individual: WASP-174; techniques: photometric; techniques: radial velocities; methods: data analysis  
  Abstract Context. The transiting exoplanetary system WASP-174 was reported to be composed by a main-sequence F star (V = 11.8 mag) and a giant planet, WASP-174b (orbital period P-orb = 4.23 days). However only an upper limit was placed on the planet mass (<1.3 M-Jup), and a highly uncertain planetary radius (0.7-1.7 R-Jup) was determined.Aims. We aim to better characterise both the star and the planet and precisely measure their orbital and physical parameters.Methods. In order to constrain the mass of the planet, we obtained new measurements of the radial velocity of the star and joined them with those from the discovery paper. Photometric data from the HATSouth survey and new multi-band, high-quality (precision reached up to 0.37 mmag) photometric follow-up observations of transit events were acquired and analysed for getting accurate photometric parameters. We fit the model to all the observations, including data from the TESS space telescope, in two different modes: incorporating the stellar isochrones into the fit, and using an empirical method to get the stellar parameters. The two modes resulted to be consistent with each other to within 2<sigma>.Results. We confirm the grazing nature of the WASP-174b transits with a confidence level greater than 5 sigma, which is also corroborated by simultaneously observing the transit through four optical bands and noting how the transit depth changes due to the limb-darkening effect. We estimate that approximate to 76% of the disk of the planet actually eclipses the parent star at mid-transit of its transit events. We find that WASP-174b is a highly-inflated hot giant planet with a mass of M-p = 0.330 +/- 0.091 M-Jup and a radius of R-p = 1.435 +/- 0.050 R-Jup, and is therefore a good target for transmission-spectroscopy observations. With a density of rho (p) = 0.135 +/- 0.042 g cm(-3), it is amongst the lowest-density planets ever discovered with precisely measured mass and radius.  
  Address [Mancini, L.] Univ Roma Tor Vergata, Dept Phys, Via Ric Sci 1, I-00133 Rome, Italy, Email: lmancini@roma2.infn.it  
  Corporate Author Thesis  
  Publisher Edp Sciences S A Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-0746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000505741300005 Approved no  
  Call Number UAI @ eduardo.moreno @ Serial 1093  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: