toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Argiz, L.; Reyes, C.; Belmonte, M.; Franchi, O.; Campo, R.; Fra-Vazquez, A.; del Rio, A.V.; Mosquera-Corral, A.; Campos, J.L. doi  openurl
  Title Assessment of a fast method to predict the biochemical methane potential based on biodegradable COD obtained by fractionation respirometric tests Type
  Year 2020 Publication Journal Of Environmental Management Abbreviated Journal J. Environ. Manage.  
  Volume 269 Issue Pages 9 pp  
  Keywords Anaerobic digestion; Biodegradability; BMP; COD fractionation; Respirometric test  
  Abstract The biochemical methane potential test (BMP) is the most common analytical technique to predict the performance of anaerobic digesters. However, this assay is time-consuming (from 20 to over than 100 days) and consequently impractical when it is necessary to obtain a quick result. Several methods are available for faster BMP prediction but, unfortunately, there is still a lack of a clear alternative. Current aerobic tests underestimate the BMP of substrates since they only detect the easily biodegradable COD. In this context, the potential of COD fractionation respirometric assays, which allow the determination of the particulate slowly biodegradable fraction, was evaluated here as an alternative to early predict the BMP of substrates. Seven different origin waste streams were tested and the anaerobically biodegraded organic matter (CODmet) was compared with the different COD fractions. When considering adapted microorganisms, the appropriate operational conditions and the required biodegradation time, the differences between the CODmet, determined through BMP tests, and the biodegradable COD (CODb) obtained by respirometry, were not significant (CODmet (57.8026 +/- 21.2875) and CODb (55.6491 +/- 21.3417), t (5) = 0.189, p = 0.853). Therefore, results suggest that the BMP of a substrate might be early predicted from its CODb in only few hours. This methodology was validated by the performance of an inter-laboratory studyconsidering four additional substrates.  
  Address [Argiz, L.; Fra-Vazquez, A.; Val del Rio, A.; Mosquera-Corral, A.] Univ Santiago de Compostela, CRETUS Inst, Santiago De Compostela 15782, Galicia, Spain, Email: luciaargiz.montes@usc.es  
  Corporate Author Thesis  
  Publisher Academic Press Ltd- Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000541757200008 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 1185  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: