toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Grieves, N.; Nielsen, LD.; Vines, JI.; Bryant, EM.; Gill, S.; Bouchy, F.; Lendl, M.; Bayliss, D.; Eigmueller, P.; Segransan, D.; Acton, JS.; Anderson, DR.; Burleigh, MR.; Casewell, SL.; Chaushev, A.; Cooke, BF.; Gillen, E.; Goad, MR.; Gunther, MN.; Henderson, BA.; Hogan, A.; Jenkins, JS.; Alves, DR.; Jordan, A.; McCormac, J.; Moyano, M.; Queloz, D.; Raynard, L.; Seidel, JV.; Smith, AMS.; Tilbrook, RH.; Udry, S.; West, RG.; Wheatley, PJ. doi  openurl
  Title NGTS-13b: a hot 4.8 Jupiter-mass planet transiting a subgiant star Type
  Year 2021 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 647 Issue Pages A180  
  Keywords planets and satellites: detection; planets and satellites: individual: NGTS-13b; techniques: photometric; techniques: radial velocities  
  Abstract We report the discovery of the massive hot Jupiter NGTS-13b by the Next Generation Transit Survey (NGTS). The V = 12.7 host star is likely in the subgiant evolutionary phase with logg(*) = 4.04 +/- 0.05, T-eff = 5819 +/- 73 K, M-* = 1.30(-0.18)(+0.11) M-circle dot, and R-* = 1.79 +/- 0.06 R-circle dot. The NGTS detected a transiting planet with a period of P = 4.12 days around the star, which was later validated with the Transiting Exoplanet Survey Satellite (TESS; TIC 454069765). We confirm the planet using radial velocities from the CORALIE spectrograph. Using NGTS and TESS full-frame image photometry combined with CORALIE radial velocities, we determine NGTS-13b to have a radius of R-P = 1.142 +/- 0.046 R-Jup, a mass of M-P = 4.84 +/- 0.44 M-Jup, and an eccentricity of e = 0.086 +/- 0.034. Previous studies have suggested that similar to 4 M-Jup may be the border separating two formation scenarios (e.g., core accretion and disk instability) and that massive giant planets share similar formation mechanisms as lower-mass brown dwarfs. NGTS-13b is just above 4 M-Jup, making it an important addition to the statistical sample needed to understand the differences between various classes of substellar companions. The high metallicity of NGTS-13, [Fe/H] = 0.25 +/- 0.17, does not support previous suggestions that massive giants are found preferentially around lower metallicity host stars, but NGTS-13b does support findings that more massive and evolved hosts may have a higher occurrence of close-in massive planets than lower-mass unevolved stars.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area 0004-6361 Expedition Conference  
  Notes WOS:000636753900003 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1372  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: