toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Bergmann, C.; Jones, MI.; Zhao, J.; Mustill, AJ.; Brahm, R.; Torres, P.; Wittenmyer, RA.; Gunn, F.; Pollard, KR.; Zapata, A.; Vanzi, L.; Wang, SH. doi  openurl
  Title HD 76920 b pinned down: A detailed analysis of the most eccentric planetary system around an evolved star Type
  Year 2021 Publication Publications of the Astronomical Society of Australia Abbreviated Journal PUBL. ASTRON. SOC. AUST.  
  Volume 38 Issue Pages e019  
  Keywords EXTRA-SOLAR PLANETS; RADIAL-VELOCITY; GIANT STAR; STELLAR EVOLUTION; MASS COMPANION; EXOPLANETS; PRECISION; SEARCH; TRANSIT; I.  
  Abstract We present 63 new multi-site radial velocity (RV) measurements of the K1III giant HD 76920, which was recently reported to host the most eccentric planet known to orbit an evolved star. We focused our observational efforts on the time around the predicted periastron passage and achieved near-continuous phase coverage of the corresponding RV peak. By combining our RV measurements from four different instruments with previously published ones, we confirm the highly eccentric nature of the system and find an even higher eccentricity of , an orbital period of 415.891(-0.039)(+0.043) d, and a minimum mass of 3.13(-0.43)(+0.41) M-J for the planet. The uncertainties in the orbital elements are greatly reduced, especially for the period and eccentricity. We also performed a detailed spectroscopic analysis to derive atmospheric stellar parameters, and thus the fundamental stellar parameters (M-*, R-*, L-*) taking into account the parallax from Gaia DR2, and independently determined the stellar mass and radius using asteroseismology. Intriguingly, at periastron, the planet comes to within 2.4 stellar radii of its host star's surface. However, we find that the planet is not currently experiencing any significant orbital decay and will not be engulfed by the stellar envelope for at least another 50-80 Myr. Finally, while we calculate a relatively high transit probability of 16%, we did not detect a transit in the TESS photometry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000642222500001 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1379  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: