|
Record |
Links |
|
Author  |
Saunders, N.; Grunblatt, S.K.; Huber, D.; Collins, K.A.; Jensen, E.L.N.; Vanderburg, A.; Brahm, R.; Jordan, A.; Espinoza, N.; Henning, T.; Hobson, M.J.; Quinn, S.N.; Zhou, G.; Butler, R.P.; Crause, L.; Kuhn, R.B.; Mogotsi, K.M.; Hellier, C.; Angus, R.; Hattori, S.; Chontos, A.; Ricker, G.R.; Jenkins, J.M.; Tenenbaum, P.; Latham, D.W.; Seager, S.; Vanderspek, R.K.; Winn, J.N.; Stockdale, C.; Cloutier, R. |

|
|
Title |
TESS Giants Transiting Giants. I.: A Noninflated Hot Jupiter Orbiting a Massive Subgiant |
Type |
|
|
Year |
2022 |
Publication |
Astronomical Journal |
Abbreviated Journal |
Astron. J. |
|
|
Volume |
163 |
Issue |
2 |
Pages |
53 |
|
|
Keywords |
SATURN; PLANET; EVOLUTION; EFFICIENT |
|
|
Abstract |
While the population of confirmed exoplanets continues to grow, the sample of confirmed transiting planets around evolved stars is still limited. We present the discovery and confirmation of a hot Jupiter orbiting TOI-2184 (TIC 176956893), a massive evolved subgiant (M-* = 1.53 +/- 0.12 M-circle dot, R-* = 2.90 +/- 0.14 R-circle dot) in the Transiting Exoplanet Survey Satellite (TESS) Southern Continuous Viewing Zone. The planet was flagged as a false positive by the TESS Quick-Look Pipeline due to periodic systematics introducing a spurious depth difference between even and odd transits. Using a new pipeline to remove background scattered light in TESS Full Frame Image data, we combine space-based TESS photometry, ground-based photometry, and ground-based radial velocity measurements to report a planet radius of R (p) = 1.017 +/- 0.051 R (J) and mass of M (p) = 0.65 +/- 0.16 M (J) . For a planet so close to its star, the mass and radius of TOI-2184b are unusually well matched to those of Jupiter. We find that the radius of TOI-2184b is smaller than theoretically predicted based on its mass and incident flux, providing a valuable new constraint on the timescale of post-main-sequence planet inflation. The discovery of TOI-2184b demonstrates the feasibility of detecting planets around faint (TESS magnitude > 12) post-main-sequence stars and suggests that many more similar systems are waiting to be detected in the TESS FFIs, whose confirmation may elucidate the final stages of planetary system evolution. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0004-6256 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000740832800001 |
Approved |
|
|
|
Call Number |
UAI @ alexi.delcanto @ |
Serial |
1534 |
|
Permanent link to this record |