toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Luengwilai, K.; Yu, J.W.; Jimenez, R.C.; Thitisaksakul, M.; Vega, A.; Dong, S.Y.; Beckles, D.M. doi  openurl
  Title Ectopic Expression of Arabidopsis thaliana zDof1.3 in Tomato (Solanum lycopersicum L.) Is Associated with Improved Greenhouse Productivity and Enhanced Carbon and Nitrogen Use Type
  Year 2022 Publication International Journal of Molecular Sciences Abbreviated Journal Int. J. Mol. Sci.  
  Volume 23 Issue 19 Pages 11229  
  Keywords Dof; transcription factor; tomato; carbohydrates; nitrogen metabolism  
  Abstract A large collection of transgenic tomato lines, each ectopically expressing a different Arabidopsis thaliana transcription factor, was screened for variants with alterations in leaf starch. Such lines may be affected in carbon partitioning, and in allocation to the sinks. We focused on 'L4080', which harbored an A. thaliana zDof (DNA-binding one zinc finger) isoform 1.3 (AtzDof1.3) gene, and which had a 2-4-fold higher starch-to-sucrose ratio in source leaves over the diel (p < 0.05). Our aim was to determine whether there were associated effects on productivity. L4080 plants were altered in nitrogen (N) and carbon (C) metabolism. The N-to-C ratio was higher in six-week-old L4080, and when treated with 1/10 N, L4080 growth was less inhibited compared to the wild-type and this was accompanied by faster root elongation (p < 0.05). The six-week-old L4080 acquired 42% more dry matter at 720 ppm CO2, compared to ambient CO2 (p < 0.05), while the wild-type (WT) remained unchanged. GC-MS-TOF data showed that L4080 source leaves were enriched in amino acids compared to the WT, and at 49 DPA, fruit had 25% greater mass, higher sucrose, and increased yield (25%; p < 0.05) compared to the WT. An Affymetrix cDNA array analysis suggested that only 0.39% of the 9000 cDNAs were altered by 1.5-fold (p < 0.01) in L4080 source leaves. C-14-labeling of fruit disks identified potential differences in 14-DPA fruit metabolism suggesting that post-transcriptional regulation was important. We conclude that AtzDof1.3 and the germplasm derived therefrom, should be investigated for their 'climate-change adaptive' potential.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000867764100001 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1675  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: