toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Aylwin, R.; Henriquez, F.; Schwab, C. doi  openurl
  Title ReLU Neural Network Galerkin BEM Type
  Year 2023 Publication Journal of Scientific Computing Abbreviated Journal J. Sci. Comput.  
  Volume 95 Issue 2 Pages 41  
  Keywords BOUNDARY INTEGRAL METHOD; ELEMENT METHODS; P-VERSION; CONVERGENCE; FRAMEWORK; EQUATIONS; OPERATORS; SCREEN  
  Abstract We introduce Neural Network (NN for short) approximation architectures for the numerical solution of Boundary Integral Equations (BIEs for short). We exemplify the proposed NN approach for the boundary reduction of the potential problem in two spatial dimensions. We adopt a Galerkin formulation-based method, in polygonal domains with a finite number of straight sides. Trial spaces used in the Galerkin discretization of the BIEs are built by using NNs that, in turn, employ the so-called Rectified Linear Units (ReLU) as the underlying activation function. The ReLU-NNs used to approximate the solutions to the BIEs depend nonlinearly on the parameters characterizing the NNs themselves. Consequently, the computation of a numerical solution to a BIE by means of ReLU-NNs boils down to a fine tuning of these parameters, in network training. We argue that ReLU-NNs of fixed depth and with a variable width allow us to recover well-known approximation rate results for the standard Galerkin Boundary Element Method (BEM). This observation hinges on existing well-known properties concerning the regularity of the solution of the BIEs on Lipschitz, polygonal boundaries, i.e. accounting for the effect of corner singularities, and the expressive power of ReLU-NNs over different classes of functions. We prove that shallow ReLU-NNs, i.e. networks having a fixed, moderate depth but with increasing width, can achieve optimal order algebraic convergence rates. We propose novel loss functions for NN training which are obtained using computable, local residual a posteriori error estimators with ReLU-NNs for the numerical approximation of BIEs. We find that weighted residual estimators, which are reliable without further assumptions on the quasi-uniformity of the underlying mesh, can be employed for the construction of computationally efficient loss functions for ReLU-NN training. The proposed framework allows us to leverage on state-of-the-art computational deep learning technologies such as TENSORFLOW and TPUs for the numerical solution of BIEs using ReLU-NNs. Exploratory numerical experiments validate our theoretical findings and indicate the viability of the proposed ReLU-NN Galerkin BEM approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-7474 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000954568900001 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1769  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: