toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Rodríguez-Valdecantos, G.; Torres-Rojas, F.; Muñoz-Echeverría, S.; Mora-Ruiz, M.D.; Rosselló-Móra, R.; Cid-Cid, L.; Ledger, T.; González, B. doi  openurl
  Title Aromatic compounds depurative and plant growth promotion rhizobacteria abilities of Allenrolfea vaginata (Amaranthaceae) rhizosphere microbial communities from a solar saltern hypersaline soil Type
  Year 2023 Publication Frontiers In Microbiology Abbreviated Journal Front. Microbiol.  
  Volume 14 Issue Pages 1251602  
  Keywords aromatic compounds; halophiles; PGPR; rhizospheres; alterns  
  Abstract Introduction: This work investigates whether rhizosphere microorganisms that colonize halophyte plants thriving in saline habitats can tolerate salinity and provide beneficial effects to their hosts, protecting them from environmental stresses, such as aromatic compound (AC) pollution.Methods: To address this question, we conducted a series of experiments. First, we evaluated the effects of phenol, tyrosine, 4-hydroxybenzoic acid, and 2,4-dichlorophenoxyacetic (2,4-D) acids on the soil rhizosphere microbial community associated with the halophyte Allenrolfea vaginata. We then determined the ability of bacterial isolates from these microbial communities to utilize these ACs as carbon sources. Finally, we assessed their ability to promote plant growth under saline conditions.Results: Our study revealed that each AC had a different impact on the structure and alpha and beta diversity of the halophyte bacterial (but not archaeal) communities. Notably, 2,4-D and phenol, to a lesser degree, had the most substantial decreasing effects. The removal of ACs by the rhizosphere community varied from 15% (2,4-D) to 100% (the other three ACs), depending on the concentration. Halomonas isolates were the most abundant and diverse strains capable of degrading the ACs, with strains of Marinobacter, Alkalihalobacillus, Thalassobacillus, Oceanobacillus, and the archaea Haladaptatus also exhibiting catabolic properties. Moreover, our study found that halophile strains Halomonas sp. LV-8T and Marinobacter sp. LV-48T enhanced the growth and protection of Arabidopsis thaliana plants by 30% to 55% under salt-stress conditions.Discussion: These results suggest that moderate halophile microbial communities may protect halophytes from salinity and potential adverse effects of aromatic compounds through depurative processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-302X ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001102328400001 Approved  
  Call Number UAI @ alexi.delcanto @ Serial 1918  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: