toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Giustinianovich, E.A.; Campos, J.L.; Roeckel, M.D.; Estrada, A.J.; Mosquera-Corral, A.; del Rio, A.V. pdf  doi
openurl 
  Title Influence of biomass acclimation on the performance of a partial nitritation-anammox reactor treating industrial saline effluents Type
  Year 2018 Publication Chemosphere Abbreviated Journal Chemosphere  
  Volume 194 Issue Pages 131-138  
  Keywords Anammox; Canning industry effluents; Nitrogen removal; Partial nitritation; Saline effluents  
  Abstract The performance of the partial nitritation/anammox processes was evaluated for the treatment of fish canning effluents. A sequencing batch reactor (SBR) was fed with industrial wastewater, with variable salt and total ammonium nitrogen (TAN) concentrations in the range of 1.75-18.00 g-NaCl L-1 and 112 – 267 mg-TAN L-1. The SBR operation was divided into two experiments: (A) progressive increase of salt concentrations from 1.75 to 1833 g-NaCl L-1; (B) direct application of high salt concentration (18 g-NaCl L-1). The progressive increase of NaCl concentration provoked the inhibition of the anammox biomass by up to 94% when 18 g-NaCl L-1 were added. The stable operation of the processes was achieved after 154 days when the nitrogen removal rate was 0.021 +/- 0.007 g N/L.d (corresponding to 30% of removal efficiency). To avoid the development of NOB activity at low salt concentrations and to stabilize the performance of the processes dissolved oxygen was supplied by intermittent aeration. A greater removal rate of 0.029 +/- 0.017 g-N L-1 d(-1) was obtained with direct exposure of the inoculum to 18 g-NaCl L-1 in less than 40 days. Also, higher specific activities than those from the inoculum were achieved for salt concentrations of 15 and 20 g-NaCl L-1 after 39 days of operation. This first study of the performance of the partial nitritation/anammox processes, to treat saline wastewaters, indicates that the acclimation period can be avoided to shorten the start-up period for industrial application purposes. Nevertheless, further experiments are needed in order to improve the efficiency of the processes. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address [Giustinianovich, Elisa A.; Roeckel, Marlene D.] Univ Concepcion, Dept Chem Engn, Concepcion, Chile, Email: mangeles.val@usc.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000423890700017 Approved  
  Call Number UAI @ eduardo.moreno @ Serial 817  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: