Stochastic transit equilibrium
Cortes
C
E
author
Jara-Moroni
P
author
Moreno
E
author
Pineda
C
author
2013
English
We present a transit equilibrium model in which boarding decisions are stochastic. The model incorporates congestion, reflected in higher waiting times at bus stops and increasing in-vehicle travel time. The stochastic behavior of passengers is introduced through a probability for passengers to choose boarding a specific bus of a certain service. The modeling approach generates a stochastic common-lines problem, in which every line has a chance to be chosen by each passenger. The formulation is a generalization of deterministic transit assignment models where passengers are assumed to travel according to shortest hyperpaths. We prove existence of equilibrium in the simplified case of parallel lines (stochastic common-lines problem) and provide a formulation for a more general network problem (stochastic transit equilibrium). The resulting waiting time and network load expressions are validated through simulation. An algorithm to solve the general stochastic transit equilibrium is proposed and applied to a sample network; the algorithm works well and generates consistent results when considering the stochastic nature of the decisions, which motivates the implementation of the methodology on a real-size network case as the next step of this research. (C) 2013 Elsevier Ltd. All rights reserved.
Transit equilibrium
Stochastic models
Hyperpaths
Congested networks
Simulation
WOS:000318323000003
exported from refbase (show.php?record=279), last updated on Thu, 30 May 2013 07:45:46 -0400
text
files/260_Cortes_etal2013.pdf
10.1016/j.trb.2013.02.001
Cortes_etal2013
Transportation Research Part B-Methodological
Transp. Res. Pt. B-Methodol.
2013
Pergamon-Elsevier Science Ltd
continuing
periodical
academic journal
51
29
44
0191-2615