|
Carrera, P., Campo, R., Mendez, R., Di Bella, G., Campos, J. L., Mosquera-Corral, A., et al. (2019). Does the feeding strategy enhance the aerobic granular sludge stability treating saline effluents? Chemosphere, 226, 865–873.
Abstract: The development and stability of aerobic granular sludge (AGS) was studied in two Sequencing Batch Reactors (SBRs) treating fish canning wastewater. R1 cycle comprised a fully aerobic reaction phase, while R2 cycle included a plug-flow anaerobic feeding/reaction followed by an aerobic reaction phase. The performance of the AGS reactors was compared treating the same effluents with variable salt concentrations (4.97-13.45 g NaCl/L) and organic loading rates (OLR, 1.80-6.65 kg CODs/(m(3).d)). Granulation process was faster in R2 (day 34) than in R1 (day 90), however the granular biomass formed in the fully aerobic configuration was more stable to the variable feeding composition. Thus, in R1 solid retention times (SRT), up to 15.2 days, longer than in R2, up to 5.8 days, were achieved. These long SRT5 values helped the retention of nitrifying organisms and provoked the increase of the nitrogen removal efficiency to 80% in R1 while it was approximately of 40% in R2. However, the presence of an anaerobic feeding/reaction phase increased the organic matter removal efficiency in R2 (80-90%) which was higher than in R1 with a fully aerobic phase (75-85%). Furthermore, in R2 glycogen-accumulating organisms (GAOs) dominated inside the granules instead of phosphorous-accumulating organisms (PADS), suggesting that GAOs resist better the stressful conditions of a variable and high-saline influent. In terms of AGS properties an anaerobic feeding/reaction phase is not beneficial, however it enables the production of a better quality effluent. (C) 2019 Elsevier Ltd. All rights reserved.
|
|
|
Giustinianovich, E. A., Campos, J. L., Roeckel, M. D., Estrada, A. J., Mosquera-Corral, A., & del Rio, A. V. (2018). Influence of biomass acclimation on the performance of a partial nitritation-anammox reactor treating industrial saline effluents. Chemosphere, 194, 131–138.
Abstract: The performance of the partial nitritation/anammox processes was evaluated for the treatment of fish canning effluents. A sequencing batch reactor (SBR) was fed with industrial wastewater, with variable salt and total ammonium nitrogen (TAN) concentrations in the range of 1.75-18.00 g-NaCl L-1 and 112 – 267 mg-TAN L-1. The SBR operation was divided into two experiments: (A) progressive increase of salt concentrations from 1.75 to 1833 g-NaCl L-1; (B) direct application of high salt concentration (18 g-NaCl L-1). The progressive increase of NaCl concentration provoked the inhibition of the anammox biomass by up to 94% when 18 g-NaCl L-1 were added. The stable operation of the processes was achieved after 154 days when the nitrogen removal rate was 0.021 +/- 0.007 g N/L.d (corresponding to 30% of removal efficiency). To avoid the development of NOB activity at low salt concentrations and to stabilize the performance of the processes dissolved oxygen was supplied by intermittent aeration. A greater removal rate of 0.029 +/- 0.017 g-N L-1 d(-1) was obtained with direct exposure of the inoculum to 18 g-NaCl L-1 in less than 40 days. Also, higher specific activities than those from the inoculum were achieved for salt concentrations of 15 and 20 g-NaCl L-1 after 39 days of operation. This first study of the performance of the partial nitritation/anammox processes, to treat saline wastewaters, indicates that the acclimation period can be avoided to shorten the start-up period for industrial application purposes. Nevertheless, further experiments are needed in order to improve the efficiency of the processes. (C) 2017 Elsevier Ltd. All rights reserved.
|
|
|
Morales, N., del Rio, A. V., Vazquez-Padin, J. R., Mendez, R., Mosquera-Corral, A., & Campos, J. L. (2015). Integration of the Anammox process to the rejection water and main stream lines of WWTPs. Chemosphere, 140, 99–105.
Abstract: Nowadays the application of Anammox based processes in the wastewater treatment plants has given a step forward. The new goal consists of removing the nitrogen present in the main stream of the WWTTPs to improve their energetic efficiencies. This new approach aims to remove not only the nitrogen but also to provide a better use of the energy contained in the organic matter. The organic matter will be removed either by an anaerobic psychrophilic membrane reactor or an aerobic stage operated at low solids retention time followed by an anaerobic digestion of the generated sludge. Then ammonia coming from these units will be removed in an Anammox based process in a single unit system. The second strategy provides the best results in terms of operational costs and would allow reductions of about 28%. Recent research works performed on Anammox based processes and operated at relatively low temperatures and/or low ammonia concentrations were carried out in single-stage systems using biofilms, granules or a mixture of flocculent nitrifying and granular Anammox biomasses. These systems allowed the appropriated retention of Anammox and ammonia oxidizing bacteria but also the proliferation of nitrite oxidizing bacteria which seems to be the main drawback to achieve the required effluent quality for disposal. Therefore, prior to the implementation of the Anammox based processes at full scale to the water line, a reliable strategy to avoid nitrite oxidation should be defined in order to maintain the process stability and to obtain the desired effluent quality. If not, the application of a post-denitrification step should be necessary. (C) 2015 Elsevier Ltd. All rights reserved.
|
|