|
Alcaino, P., Santa-Maria, H., Magna-Verdugo, C., & Lopez, L. (2020). Experimental fast-assessment of post-fire residual strength of reinforced concrete frame buildings based on non-destructive tests. Constr. Build. Mater., 234, 10 pp.
Abstract: Assessment of the residual strength of reinforced concrete buildings subjected to fire is a problem that requires fast and sufficiently reliable resolution, necessary for the action of firefighters, forensic fire investigation, and structural assessment of post-fire condition of the building to take place. In all cases safety and integrity of firefighters and researchers can be at risk, and it is necessary to have rapidly and sufficiently reliable information in order to choose whether to enter freely, to enter with caution, or simply do not enter to the burned structure. This required prompt assessment gives no time or background to develop mathematical models of the structure and damage propagation. This work presents an experimental methodology for a fast assessment of post-fire residual strength of reinforced concrete frame buildings based on the high correlation between the loss of strength and non-destructive test results of frame concrete elements subjected to fire action. (C) 2019 Elsevier Ltd. All rights reserved.
|
|
|
Antico, F. C., De la Varga, I., Esmaeeli, H. S., Nantung, T. E., Zavattieri, P. D., & Weiss, W. J. (2015). Using accelerated pavement testing to examine traffic opening criteria for concrete pavements. Constr. Build. Mater., 96, 86–95.
Abstract: The risk of cracking in a concrete pavement that is opened to traffic at early ages is related to the maximum tensile stress sigma(I), that develops in the pavement and its relationship to the measured, age dependent, flexural strength of a beam,f(r). The stress that develops in the pavement is due to several factors including traffic loading and restrained volume change caused by thermal or hygral variations. The stress that develops is also dependent on the time-dependent mechanical properties, pavement thickness, and subgrade stiffness. There is a strong incentive to open many pavements to traffic as early as possible to allow construction traffic or traffic from the traveling public to use the pavement. However, if the pavement is opened to traffic too early, cracking may occur that may compromise the service life of the pavement. The purpose of this paper is two-fold: (1) to examine the current opening strength requirements for concrete pavements (typically a flexural strength from beams, f(r)) and (2) to propose a criterion based on the time-dependent changes of sigma(I)/f(r), which accounts for pavement thickness and subgrade stiffness without adding unnecessary risk for premature cracking. An accelerated pavement testing (APT) facility was used to test concrete pavements that are opened to traffic at an early age to provide data that can be compared with an analytical model to determine the effective sigma(I)/f(r), based on the relevant features of the concrete pavement, the subgrade, and the traffic load. It is anticipated that this type of opening criteria can help the decision makers in two ways: (1) it can open pavement sections earlier thereby reducing construction time and (2) it may help to minimize the use of materials with overly accelerated strength gain that are suspected to be more susceptible to develop damage at early ages than materials that gain strength more slowly. (C) 2015 Elsevier Ltd. All rights reserved.
|
|
|
Antico, F. C., Rojas, P., Briones, F., & Araya-Letelier, G. (2021). Animal fibers as water reservoirs for internal curing of mortars and their limits caused by fiber clustering. Constr. Build. Mater., 267, 120918.
Abstract: We present a bottom-up experimental research to address evidence of internal curing of mortars using randomly distributed pig-hair as water reservoirs. Plain and reinforced mortars with pig hair ranging from 0 to 8 kg of fibers per cubic meter of mortar were prepared. The microstructures of plain and reinforced mortars were scanned using electron microscopy and the microhardnesses were measured within
the bulk cement paste and cement paste near pig fibers. Electrical resistivity, surface absorption, and residual compressive strength of mortars after freeze-thaw cycles were used to test the effects of internal curing caused by pig hair. Natural fibers used to reinforce mortars increase their toughness and provide
part of the necessary water for internal curing, yet internal curing originated by the addition of natural fibers is not proportional to fiber dosage; where the potential to form fiber clusters increases as fiber dosage increases. Results show that there is an optimum fiber dosage that maximizes internal curing
caused by these fibers. This study contributes to the research on reinforced mortars with natural fibers to provide sustainable solutions for construction materials.
|
|
|
Araya-Letelier, G., Antico, F. C., Burbano-Garcia, C., Concha-Riedeld, J., Norambuena-Contreras, J., Concha, J., et al. (2021). Experimental evaluation of adobe mixtures reinforced with jute fibers. Constr. Build. Mater., 276(2021), 122127.
Abstract: Due to their sustainability as well as physical and mechanical performance, different natural fibers, both vegetal and animal fibers, have been successfully used in adobe mixtures (AMs) to enhance properties such as cracking control, flexural toughness and water erosion resistance, among others. However, the use of jute fibers (JFs), one of the most largely produced vegetal fiber worldwide, has not been extensively studied on AMs. Consequently, this study evaluates the effects of the incorporation of varying dosages (0.5 and 2.0 wt%) and lengths (7, 15, and 30 mm) of JFs on the physical/thermal/mechanical/fracture and durability performance of AMs, a specific type of earth-based construction material widely used globally. Experimental results showed that the incorporation of 2.0 wt% dosages of JFs increased the capillary water absorption of AMs, which might affect AM durability. The latter result could be explained by the additional porosity generated by the spaces left between the JFs and the matrix of adobe, as well as the inherent water absorption of the JFs. The incorporation of JFs significantly improved the behavior of AMs in terms of thermal conductivity, drying shrinkage cracking control, flexural toughness and water erosion performance, without affecting their compressive and flexural strength. For example, flexural toughness indices were increased by 297% and crack density ratio as well as water erosion depth values were reduced by 93% and 62%, respectively, when 2.0 wt%-15 mm length JFs were incorporated into AM. Since the latter combination of JF dosage and length provided the overall best results among AMs, it is recommended by this study as JF-reinforcement scheme for AMs for construction applications such as adobe masonry and earth plasters.
|
|
|
Araya-Letelier, G., Antico, F. C., Carrasco, M., Rojas, P., & Garcia-Herrera, C. M. (2017). Effectiveness of new natural fibers on damage-mechanical performance of mortar. Constr. Build. Mater., 152, 672–682.
Abstract: Addition of fibers to cement-based materials improve tensile and flexural strength, fracture toughness, abrasion resistance, delay cracking, and reduce crack widths. Natural fibers have recently become more popular in the construction materials community. This investigation addresses the characterization of a new animal fiber (pig hair), a massive food-industry waste worldwide, and its use in mortars. Morphological, physical and mechanical properties of pig hair are determined in order to be used as reinforcement in mortars. A sensitivity analysis on the volumes of fiber in mortars is developed. The results from this investigation showed that reinforced mortars significantly improve impact strength, abrasion resistance, plastic shrinkage cracking, age at cracking, and crack widths as fiber volume increases. Other properties such as compressive and flexural strength, density, porosity and modulus of elasticity of reinforced mortars are not significantly affected by the addition of pig hair. (C) 2017 Elsevier Ltd. All rights reserved.
|
|
|
Araya-Letelier, G., Concha-Riedel, J., Antico, F. C., & Sandoval, C. (2019). Experimental mechanical-damage assessment of earthen mixes reinforced with micro polypropylene fibers. Constr. Build. Mater., 198, 762–776.
Abstract: The addition of engineered polypropylene fibers to earthen materials offers new opportunities to control their damage evolution and mechanical properties that altogether provides more reliability and extends the life span of these materials. The latter is of special interest considering that earthen materials are still widely used in the form of adobe blocks for earthen masonry, cob, rammed earth or even earthen mortars for new construction and conservation of historic buildings. In this work, the effect of dosage of micro polypropylene fibers (MPPF) in the damage-mechanical performance of earthen mixes is studied experimentally. Part of the experiments includes two different tests to assess distributed and localized cracking of reinforced earth subject to restrained drying shrinkage. In addition, the experimental results showed that the incorporation of MPPF increases up to 83 times the impact strength and 11 times the flexural toughness of earthen mixes. Other mechanical properties such as compressive and flexural strength are not statistically affected by the incorporation of MPPF. (C) 2018 Elsevier Ltd. All rights reserved.
|
|
|
Araya-Letelier, G., Concha-Riedel, J., Antico, F. C., Valdes, C., & Caceres, G. (2018). Influence of natural fiber dosage and length on adobe mixes damage-mechanical behavior. Constr. Build. Mater., 174, 645–655.
Abstract: This study addresses the use of a natural fiber (pig hair), a massive food-industry waste, as reinforcement in adobe mixes (a specific type of earthen material). The relevance of this work resides in the fact that earthen materials are still widely used worldwide because of their low cost, availability, and low environmental impact. Results show that adobe mixes' mechanical-damage behavior is sensitive to both (i) fiber dosage and (ii) fiber length. Impact strength and flexural toughness are increased, whereas shrinkage distributed crack width is reduced. Average values of compressive and flexural strengths are reduced as fiber dosage and length increase, as a result of porosity generated by fiber clustering. Based on the results of this work a dosage of 0.5% by weight of dry soil using 7 mm fibers is optimal to improve crack control, flexural toughness and impact strength without statistically affecting flexural and compressive strengths. (C) 2018 Elsevier Ltd. All rights reserved.
|
|
|
Beltran, J. F., Nunez, E., Nunez, F., Silva, I., Bravo, T., & Moffat, R. (2018). Static response of asymmetrically damaged metallic strands: Experimental and numerical approach. Constr. Build. Mater., 192, 538–554.
Abstract: In this study, the effect of the presence of broken wires (damage) asymmetrically distributed on metallic strands surfaces on their static response is assessed. To this end, a general mechanical model for multi layered strands is presented, in which damaged strands are treated as a 1D nonlinear beam under uncoupled biaxial bending and axial load (NLBM). The NLBM is validated by comparisons with the results obtained from an experimental program especially designed for studying the effect of surface damage distribution on strands response and 3D nonlinear finite element simulations. Analyses are carried out on two strand constructions: 1 x 7 and 1 x 19, in which the damage levels and strand diameters vary from 5% to 40% and from 3.5 mm to 22.2 mm, respectively. Results indicate that the NLBM accurate predicts the static response (residual strength, stiffness, axial strain field, and deformed configuration) of the asymmetrically damaged strands, achieving good computational efficiency and numerical robustness. (C) 2018 Elsevier Ltd. All rights reserved.
|
|
|
Concha-Riedel, J., Antico, F. C., & Lopez-Querol, S. (2021). Mechanical strength, mass loss and volumetric changes of drying adobe matrices combined with kaolin and fine soil particles. Constr. Build. Mater., 312, 125246.
Abstract: Earthen construction represents almost 30% of the housing in developing countries, partially because of its low cost compared to steel and concrete construction, and also because the raw materials are available almost everywhere. One of the biggest disadvantages of earthen materials is the lack of information and variety on their constitutive materials, specifically their soil type. This work addresses the physical and mechanical properties of adobe matrices containing different concentrations of kaolin, which is a specific type of clay, as well as different proportions of fine particles of the original soil of the adobe matrix. All adobe matrices were manufactured with a SM-SC soil obtained from Santiago, Chile, and had concentrations of 0, 10, 30, and 50% of kaolin and 0, 10, 20, and 30% fines of the original soil content. It is concluded that the compressive strength of the studied earthen mixtures improves when kaolin is added to the mixture. The shrinkage of adobe matrices with kaolin compared to plain adobe matrices was reduced during the first days of age and stayed stable after that. This work shows that the inclusion of fines from the original soil (other than kaolin) did not significantly affect any of the studied properties. It also shows that the Unified Soil Classification System is not sufficient to characterize soils for adobe matrices.
|
|