|
Aranis, A., de la Cruz, R., Montenegro, C., Ramirez, M., Caballero, L., Gomez, A., et al. (2022). Meta-Estimation of Araucanian Herring, Strangomera bentincki (Norman, 1936), Biological Indicators in the Central-South Zone of Chile (32 degrees-47 degrees LS). Front. Mar. Sci., 9, 886321.
Abstract: Araucanian herring, Strangomera bentincki, is ecologically and economically important. Its complexity, like that of other pelagic fish, arises from seasonal population changes related to distribution with different spatial dynamics and demographic fractions, subject to strong environmental and fishing exploitation variations. This implies the necessity for a thorough understanding of biological processes, which are interpreted with the help of various activities, and directly or indirectly allow to infer and deliver adequate indicators. These activities facilitate a correct technical analysis and consistent conclusions for resource management and administration. In this context, the present study identified and addressed the need to integrate information on Araucanian herring lengths made available in historical series from commercial fleet fishing and sources such as special monitoring, hydroacoustic cruises, and monitoring during closed seasons. The study focused on methodologies widely used in biostatistics that allow analyzing the feasibility of integrating data from different origins, focused on evaluating the correct management of size structures that vary by origin, sample size, and volumes extracted. We call this tool meta-estimation. It estimates the integration of biological-fishery size indicators that originated mainly from commercial fishing and research fisheries for central-south pelagic fishery with data of catch between January and July 2018.
|
|
|
Lardies, M. A., Caballero, P., Duarte, C., & Poupin, M. J. (2021). Geographical Variation in Phenotypic Plasticity of Intertidal Sister Limpet's Species Under Ocean Acidification Scenarios. Front. Mar. Sci., 8, 647087.
Abstract: Ocean Acidification (OA) can have pervasive effects in calcifying marine organisms, and a better understanding of how different populations respond at the physiological and evolutionary level could help to model the impacts of global change in marine ecosystems. Due to its natural geography and oceanographic processes, the Chilean coast provides a natural laboratory where benthic organisms are frequently exposed to diverse projected OA scenarios. The goal of this study was to assess whether a population of mollusks thriving in a more variable environment (Talcaruca) would present higher phenotypic plasticity in physiological and morphological traits in response to different pCO(2) when compared to a population of the same species from a more stable environment (Los Molles). To achieve this, two benthic limpets (Scurria zebrina and Scurria viridula) inhabiting these two contrasting localities were exposed to ocean acidification experimental conditions representing the current pCO(2) in the Chilean coast (500 mu atm) and the levels predicted for the year 2100 in upwelling zones (1500 (mu atm). Our results show that the responses to OA are species-specific, even in this related species. Interestingly, S. viridula showed better performance under OA than S. zebrina (i.e., similar sizes and carbonate content in individuals from both populations; lower effects of acidification on the growth rate combined with a reduction of metabolism at higher pCO2). Remarkably, these characteristics could explain this species' success in overstepping the biogeographical break in the area of Talcaruca, which S. zebrina cannot achieve. Besides, the results show that the habitat factor has a strong influence on some traits. For instance, individuals from Talcaruca presented a higher growth rate plasticity index and lower shell dissolution rates in acidified conditions than those from Los Molles. These results show that limpets from the variable environment tend to display higher plasticity, buffering the physiological effects of OA compared with limpets from the more stable environment. Taken together, these findings highlight the key role of geographic variation in phenotypic plasticity to determine the vulnerability of calcifying organisms to future scenarios of OA.
|
|
|
Martel, S. I., Fernandez, C., Lagos, N. A., Labra, F. A., Duarte, C., Vivanco, J. F., et al. (2022). Acidification and high-temperature impacts on energetics and shell production of the edible clam Ameghinomya antiqua. Front. Mar. Sci., 9, 972135.
Abstract: Warming and ocean acidification are currently critical global change drivers for marine ecosystems due to their complex and irreversible effects on the ecology and evolution of marine communities. Changes in the chemistry and the temperature of the ocean impact the biological performance of marine resources by affecting their energy budget and thus imposing energetic restrictions and trade-offs on their survival, growth, and reproduction. In this study, we evaluated the interplaying effects of increased pCO(2) levels and temperature on the economically relevant clam Ameghinomya antiqua, an infaunal bivalve inhabiting a wide distributional range along the coast of Chile. Juvenile clams collected from southern Chile were exposed to a 90-day experimental set-up emulating the current and a future scenario projeced to the end of the current century for both high pCO(2)/low-pH and temperature (10 and 15 degrees C) projected for the Chilean coast. Clams showed physiological plasticity to different projected environmental scenarios without mortality. In addition, our results showed that the specimens under low-pH conditions were not able to meet the energetic requirements when increased temperature imposed high maintenance costs, consequently showing metabolic depression. Indeed, although the calcification rate was negative in the high-pCO(2) scenario, it was the temperature that determined the amount of shell loss. These results indicate that the studied clam can face environmental changes for short-term periods modifying energetic allocation on maintenance and growth processes, but with possible long-term population costs, endangering the sustainability of an important benthic artisanal fisheries resource.
|
|
|
Valdivia, N., Aguilera, M. A., & Broitman, B. R. (2021). High Dimensionality of the Stability of a Marine Benthic Ecosystem. Front. Mar. Sci., 7, 569650.
Abstract: Stability is a central property of complex systems and encompasses multiple dimensions such as resistance, resilience, recovery, and invariability. How these dimensions correlate among them is focus of recent ecological research, but empirical evidence at regional scales, at which conservation decisions are usually made, remains absent. Using a field-based manipulative experiment conducted in two marine intertidal regions, we analyze the correlations among different aspects of stability in functioning (community cover) and composition of local communities facing a press disturbance. The experiment involved the removal of the local space-dominant species for 35 months in eight sites under different environmental regimes in northern- and southern-central Chile (ca. 30 and 40 degrees S, respectively). After the disturbance, the magnitude of the initial responses and the recovery patterns were similar among communities dominated by different species, but varied between the functional and compositional response variables, and among four dimensions of stability. The recovery trajectories in function and composition remained mostly uncorrelated across the system. Yet, larger initial functional responses were associated with faster recovery trajectories-high functional resilience, in turn, was associated with both, high and low variability in the pattern of recovery. Finally, the compositional stability dimensions were independent from each other. The results suggest that varying community compositions can perform similar levels of functioning, which might be the result of strong compensatory dynamics among species competing for space in these communities. Knowledge of several, and sometimes independent, aspects of stability is mandatory to fully describe the stability of complex ecological systems.
|
|