|
Ferrada, F., Babonneau, F., Homem-de-Mello, T., & Jalil-Vega, F. (2022). Energy planning policies for residential and commercial sectors under ambitious global and local emissions objectives: A Chilean case study. J. Clean. Prod., 350, 131299.
Abstract: Chile is currently engaged in an energy transition process to meet ambitious greenhouse gas reductions and improved air quality indices. In this paper, we apply a long-term energy planning model, with the objective of finding the set of technologies that meet strong reductions of CO2 emissions and of local PM2.5 concentrations. For this purpose, we use the existing ETEM-Chile (Energy-Technology-Environment-Model) model which considers a simplified version of the Chilean electricity sector that we extend to the residential and commercial sectors and to local concentration considerations. We propose an original approach to integrate in the same framework local and global emission constraints. Results show that to meet the goal of zero emissions by 2050, electrification of end-use demands increases up to 49.2% with a strong growth of the CO2 marginal cost. It should be noted that this electrification rate is much lower than government projections and those usually found in the literature, in certain geographic areas in southern Chile with a wide availability of firewood for residential heating. Regarding local PM2.5 concentrations, our analysis shows that even without a specific emission reduction target, acceptable PM2.5 concentrations are achieved by 2045, due to first the emergence of more efficient, cleaner and cost-effective end-use technologies, in particular, residential firewood heaters, and second the use of drier and therefore less contaminating firewood. Achieving acceptable air quality as early as 2030 is also possible but comes with a high marginal cost of PM2.5 concentration. Our results illustrate the need for implementing effective public policies to (i) regulate the firewood heating market to increase its production and improve its environmental quality and (ii) incentivize the installation of efficient firewood heaters in the residential sector.
|
|
|
Ferraz, A. D. N., Machado, P. G., Jalil-Vega, F., Coelho, S. T., & Woods, J. (2022). Liquefied biomethane from sugarcane vinasse and municipal solid waste: Sustainable fuel for a green-gas heavy duty road freight transport corridor in Sao Paulo state. J. Clean. Prod., 335, 130281.
Abstract: Diversifying the energy components of a country's transport sector is essential to guarantee the fuel supply to consumers and increase the market dynamics and competitiveness. Among the known alternative fuels, biogas is a renewable source and after upgrading to biomethane, it presents a similar composition to natural gas (>90% of CH4; 35-40 MJ m(-3)). In addition, it can be produced from a wide variety of biological resources and at different scales In this study, two scenarios have been developed that evaluate the use of liquefied biomethane (LBM) as a diesel replacement option in the freight sector of an area of 248,223 km(2) (equivalent to the area of the UK). Sugarcane vinasse (SVC) and Municipal Solid Waste (MSW) were the sole feedstocks for biogas production. The first scenario, non-restricted scenario (NRS), covered the entire territory while, the second scenario, restricted scenario (RS), includes only the area where gas pipelines are available. An economic assessment of the entire biogas value chain including, biogas production units, purification, transport and end-use was performed. The minimum selling price (MSP) of biomethane throughout the biogas chain was then estimated. LBM is estimated to be a cost-effective and affordable fuel choice compared to diesel. The technical potential of biogas production by the sugarcane mills and landfills of Sao Paulo state can replace up to half of the diesel consumed in the territory. The minimum distances and optimal locations methodology indicated the need for 120 liquefaction plants in the NRS, 35 injection points in the RS, and 7 refuelling stations to supply LBM throughout the state of Sao Paulo. The units for CO2 removal had the greatest influence on capital costs (similar to 60%) in both scenarios. Expenditure associated with the gas injection operation and its transport comprised more than 90% of the operating costs of the RS. Electricity purchasing represented the highest share of the operating costs at biogas purification (20%-30%) and biomethane liquefaction (65%-91%) units. Personnel costs are observed along the entire biogas chain, especially, in the biomethane transport step (40%), indicating an opportunity to generate wealth, jobs, and income. Despite our projections for the cost-effective and competitive supplies of LBM as a diesel replacement fuel, policy support measures such as a feed-in tariff, are likely to be necessary in order to overcome non-technical barriers and gain wider acceptability.
|
|
|
O'Ryan, R., Nasirov, S., & Osorio, H. (2023). Assessment of the potential impacts of a carbon tax in Chile using dynamic CGE model. J. Clean. Prod., 403, 136694.
Abstract: Carbon taxes have been proposed as a major instrument to mitigate carbon emissions and promote an energy transition to low carbon sources. However, its adoption remains politically challenging, particularly amid rising inflation and energy prices. Despite the need for more aggressive action on carbon mitigation to reach the Paris Agreement goals, few countries in Latin America have adopted carbon taxes and the tax levels are relatively low. A key concern for these countries, is to adequately assess the tradeoffs between stricter emission goals and the potential negative economy wide as well as sectoral and distributive impacts. In this context, in this paper we first propose a step by step approach to enhance an existing dynamic Computable General Equilibrium (CGE) model for Chile based on OECD's Green model. The contribution of this research is twofold. Firstly, emission factors are estimated and the development of the electricity sector is aligned with the expectations of decision makers. As a result, credible emission and energy sector development forecasts are generated by the model, that are in line with what policymakers expect to happen based on other bottom-up engineering models. Secondly, this baseline is then used in the CGE model to examine the use of a carbon tax to reach Chile's first Nationally Determined Contribution. The required tax level is determined together with CO2 emissions and the econo-mywide, sectoral and distributive impacts. The results allow concluding about the applicability of carbon taxes and possible complementary measures.
|
|
|
Simon, F., Girard, A., Krotki, M., & Ordonez, J. (2021). Modelling and simulation of the wood biomass supply from the sustainable management of natural forests. J. Clean. Prod., 282, 124487.
Abstract: Wood biomass is an important energy resource, which can contribute to reduce the dependence on fossil fuels. The research undertakes the microeconomic approach to estimate the technical availability and operational costs of woody biomass production with a higher level of precision than other models present in the literature, as it considers the entire supply chain of the sustainable management of natural forests. This study introduces a tool, which is applied to estimate supply curves and costs of wood biomass extraction from natural forests in the 7th Region of Chile. The simulation indicates that 531,015 tons/year of wood biomass is available in natural forests of the Region under study, with extraction costs ranging from 24.51 to 56.68 US$/ton, or an average total cost of 40.97 US$/ton. The parametric analysis revealed that the maximum admissible distance to the nearest transport route and the transportation costs are the two most influential variables in the estimation of wood biomass supply and cost. Reducing the admissible distance from 5 km to 1 km reduced the availability of biomass by 80%, while a variation of +/- 50% of transportation costs translated into +/- 18.3% variation of total extraction costs.
The proposed method can be used to identify the technical-economic potential of wood biomass from natural forests in any commune, province, region, or country; as it has the flexibility to allow tests with multiple scenarios and parameters depending on the specific characteristics of the area to be analysed. Essentially, the purpose of this tool is to serve the assessment processes of the identification of new wood biomass resources, allowing decision makers to increase the potential of sustainable and cost-effective woody biomass for heat and electricity generation, and at the same time reduce greenhouse gas emissions and the dependence on fossil fuels.
|
|
|
Vargas-Ferrer, P., Alvarez-Miranda, E., Tenreiro, C., & Jalil-Vega, F. (2023). Integration of high levels of electrolytic hydrogen production: Impact on power systems planning. J. Clean. Prod., 409, 137110.
Abstract: The increasing interest in electrolytic hydrogen production using renewable electricity sources will require to adapt power systems to new electrical loads for hydrogen production and supply chains. Such high loads would impact the long-term planning and operation of power systems, as they need to balance the variability of renewable generation sources with electricity demand. This stresses the importance of characterizing the impact of incorporating hydrogen supply chains into power systems and planning accordingly. This study proposes a methodological framework to assess the integration and development of a national power system with electrolytic hydrogen production and supply chain. The framework is based on the well-known optimization tool for energy systems planning, Open Source Energy Modeling System (OSeMOSYS). For a detailed representation, a module was developed where demand side technologies � such as those associated to hydrogen supply chains � can provide operating reserves. As a case study, the integration of the Chilean power system with a hydrogen supply chain for exporting hydrogen between 2018 and 2050 was modeled. Among other findings, results indicate that an on-grid hydrogen supply chain would be more cost-effective than an off-grid one. However, the new electrical loads originated from such hydrogen supply chain would require additional generation capacity � primarily photovoltaic. Other generation capacities such as concentrated solar power, wind, and storage would experience significant variations in their investment requirements, compared to the off-grid hydrogen supply chain scenario. The study revealed that the coordinated operation of electrolyzers is crucial to the operational flexibility of the new electrical system.
|
|
|
Zavala, C., Babonneau, F., & Homem-de-Mello, T. (2023). Measuring the impact of regional climate change on heating and cooling demand for the Chilean energy transition. J. Clean. Prod., 428, 139390.
Abstract: The regional impact of climate change on heating and cooling demand is important to consider when designing optimal long-term energy policies. Several studies have addressed this issue, but either at a very aggregated level or without optimizing the whole energy system. The aims of this paper are to fill this gap in a generic way and to assess the impact of climate change on heating and cooling energy demands for residential and commercial sectors at the regional and nodal levels in the context of Chile's energy transition. We propose a methodology based on high resolution climate simulations for the Representative Concentration Pathways (RCP) RCP 2.6 and RCP 8.5 scenarios. First, a statistical analysis is performed to estimate the long-term trends of so-called heating and cooling degree-days and their impact on final regional energy demands. Then, demand pathways in the energy transition are assessed using a multi-sectoral energy planning model. Numerical experiments using data from Chile show an overall positive economic impact of climate change (limited to heating and cooling demands) for the energy system, with a significant decrease in heating demand compared to a limited increase in cooling requirements. For the RCP 8.5 scenario, cost reductions reach 2.1% of the total discounted system cost on the 2020-2050 period mainly due to a significant decrease of gas consumption for heating. This research highlights the importance for policymakers to consider climate change in efficient energy policies.
|
|