|
Arunachalam, K. P., Avudaiappan, S., Flores, E. I. S., & Parra, P. F. (2023). Experimental Study on the Mechanical Properties and Microstructures of Cenosphere Concrete. Materials, 16(9), 3518.
Abstract: The most valuable components of coal fly ash are cenospheres. Cenospheres are hollow spherical particles produced during the coal-burning processes. As a result of their excellent characteristics, such as high workability, high heat resistance, low bulk density, and high strength, cenospheres can be used in the manufacturing of lightweight cement concrete. The research efforts and outcomes are to produce long-lasting cement-based lightweight concrete (LWC) composites with good mechanical properties. The novelty of this investigation is to determine the cement concrete strength when silica fume (SF) and cenospheres (CS) were used as a replacement for cement. Throughout the experiments, a consistent substitution of 12% silica fume was incorporated into cement mass. Silica is used as a micro filler and pozzolanic reactant to strengthen concrete. The concrete mixtures were tested to ensure they met the requirements of the lightweight concrete in terms of their mechanical, physical, and durability qualities. According to the findings, lightweight concrete standards were met, and environmental sustainability was improved with the use of these mix proportions. Concrete specimen's self-weight decreases by 35% with 30% cenosphere as a replacement. The micrograph shows the lack of portlandite is filled by mullite and other alumino silicates from the cenosphere. In order to achieve sustainability in concrete manufacturing, these mixtures can be suggested for the making of structural LWC that makes use of a large volume of industrial waste while conserving cement and natural resources.
|
|
|
Fukushima, K., Kabir, M., Kanda, K., Obara, N., Fukuyama, M., & Otsuki, A. (2022). Equivalent Circuit Models: An Effective Tool to Simulate Electric/Dielectric Properties of Ores-An Example Using Granite. Materials, 15(13), 4549.
Abstract: The equivalent circuit model is widely used in high-voltage (HV) engineering to simulate the behavior of HV applications for insulation/dielectric materials. In this study, equivalent circuit models were prepared in order to represent the electric and dielectric properties of minerals and voids in a granite rock sample. The HV electric-pulse application shows a good possibility of achieving a high energy efficiency with the size reduction and selective liberation of minerals from rocks. The electric and dielectric properties were first measured, and the mineral compositions were also determined by using a micro-X-ray fluorescence spectrometer. Ten patterns of equivalent circuit models were then prepared after considering the mineral distribution in granite. Hard rocks, as well as minerals, are dielectric materials that can be represented as resistors and capacitors in parallel connections. The values of the electric circuit parameters were determined from the known electric and dielectric parameters of the minerals in granite. The average calculated data of the electric properties of granite agreed with the measured data. The conductivity values were 53.5 pS/m (measurement) and 36.2 pS/m (simulation) in this work. Although there were some differences between the measured and calculated data of dielectric loss (tan delta), their trend as a function of frequency agreed. Even though our study specifically dealt with granite, the developed equivalent circuit model can be applied to any other rock.
|
|
|
Mellado, P. (2022). Topological edge states in dipolar zig-zag stripes. J. Phys. Materials, 5(3), 034007.
Abstract: We study the magnon spectrum of stacked zig-zag chains of point magnetic dipoles with an easy axis. The anisotropy due to the dipolar interactions and the two-point basis of the zig-zag chain unit cell combine to give rise to topologically non-trivial magnon bands in 2D zig-zag lattices. Adjusting the distance between the two sublattice sites in the unit cell causes a band touching, which triggers the exchange of the Chern numbers of volume bands switching the sign of the thermal conductivity and the sense of motion of edges modes in zig-zag stripes. We show that these topological features survive when the range of the dipolar interactions is truncated up to the second nearest neighbors.
|
|
|
Norambuena-Contreras, J., Arteaga-Perez, L. E., Guadarrama-Lezama, A. Y., Briones, R., Vivanco, J. F., & Gonzalez-Torre, I. (2020). Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials. Materials, 13(6), 16 pp.
Abstract: Asphalt self-healing by encapsulated rejuvenating agents is considered a revolutionary technology for the autonomic crack-healing of aged asphalt pavements. This paper aims to explore the use of Bio-Oil (BO) obtained from liquefied agricultural biomass waste as a bio-based encapsulated rejuvenating agent for self-healing of bituminous materials. Novel BO capsules were synthesized using two simple dripping methods through dropping funnel and syringe pump devices, where the BO agent was microencapsulated by external ionic gelation in a biopolymer matrix of sodium alginate. Size, surface aspect, and elemental composition of the BO capsules were characterized by optical and scanning electron microscopy and energy-dispersive X-ray spectroscopy. Thermal stability and chemical properties of BO capsules and their components were assessed through thermogravimetric analysis (TGA-DTG) and Fourier-Transform Infrared spectroscopy (FTIR-ATR). The mechanical behavior of the capsules was evaluated by compressive and low-load micro-indentation tests. The self-healing efficiency over time of BO as a rejuvenating agent in cracked bitumen samples was quantified by fluorescence microscopy. Main results showed that the BO capsules presented an adequate morphology for the asphalt self-healing application, with good thermal stability and physical-chemical properties. It was also proven that the BO can diffuse in the bitumen reducing the viscosity and consequently self-healing the open microcracks.
|
|
|
Otsuki, A. (2023). Editorial for the Special Issue: “Characterization and Processing of Complex Materials”. Materials, 16(10), 3830.
|
|
|
Selvamani, M., Kesavan, A., Arulraj, A., Ramamurthy, P. C., Rahaman, M., Pandiaraj, S., et al. (2024). Microwave-Assisted Synthesis of Flower-like MnMoO4 Nanostructures and Their Photocatalytic Performance. Materials, 17(7), 1451.
Abstract: This article describes an affordable method for the synthesis of MnMoO4 nanoflowers through the microwave synthesis approach. By manipulating the reaction parameters like solvent, pH, microwave power, and irradiation duration along this pathway, various nanostructures can be acquired. The synthesized nanoflowers were analyzed by using a powder X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and UV-vis diffuse reflectance spectroscopy (UV-DRS) to determine their crystalline nature, morphological and functional group, and optical properties, respectively. X-ray photoelectron spectroscopy (XPS) was performed for the examination of elemental composition and chemical states by qualitative and quantitative analysis. The results of the investigations demonstrated that the MnMoO4 nanostructures with good crystallinity and distinct shape were formed successfully. The synthesized MnMoO4 nanoflowers were tested for their efficiency as a photocatalyst in the degradation studies of methylene blue (MB) as model organic contaminants in an aqueous medium under visible light, which showed their photocatalytic activity with a degradation of 85%. Through the band position calculations using the electronegative value of MnMoO4, the photocatalytic mechanism of the nanostructures was proposed. The results indicated that the effective charge separation, and transfer mechanisms, in addition to the flower-like shape, were responsible for the photocatalytic performance. The stability of the recovered photocatalyst was examined through its recyclability in the degradation of MB. Leveraging MnMoO4's photocatalytic properties, future studies may focus on scaling up these processes for practical and large-scale environmental remediation.
|
|
|
Vargas, I. T., Fischer, D. A., Alsina, M. A., Pavissich, J. P., Pasten, P. A., & Pizarro, G. E. (2017). Copper Corrosion and Biocorrosion Events in Premise Plumbing. Materials, 10(9), 30 pp.
Abstract: Corrosion of copper pipes may release high amounts of copper into the water, exceeding the maximum concentration of copper for drinking water standards. Typically, the events with the highest release of copper into drinking water are related to the presence of biofilms. This article reviews this phenomenon, focusing on copper ingestion and its health impacts, the physicochemical mechanisms and the microbial involvement on copper release, the techniques used to describe and understand this phenomenon, and the hydrodynamic effects. A conceptual model is proposed and the mathematical models are reviewed.
|
|
|
Vera, R., Bagnara, M., Henriquez, R., Munoz, L., Rojas, P., & Diaz-Gomez, A. (2023). Performance of Anticorrosive Paint Systems for Carbon Steel in the Antarctic Marine Environment. Materials, 16(16), 5713.
Abstract: This study evaluated the behavior of three paint systems exposed to the Antarctic marine environment for 45 months compared to a control of uncoated carbon steel with a determined corrosion rate. At the study site, all environmental conditions, solar radiation, and the concentration of environmental pollutants (Cl- and SO2) were evaluated. The paint systems differed in terms of the primer and top coat. Coated samples were studied before and after exposure. They were evaluated visually and using SEM to determine adhesion, abrasion, and contact angle; using the Evans X-Cut Tape Test; using ATR-FTIR spectroscopy to analyze the state of aging of the top layer; and using electrochemical impedance spectroscopy (EIS) for coat protection characterization. The corrosion rate obtained for steel was 85.64 mu m year (-1), which aligned with a C5 environmental corrosivity category. In general, the evaluation in the period studied showed the paint systems had good adhesion and resistance to delamination, without the presence of surface rust, and exhibited some loss of brightness, an increase in the abrasion index, and a decrease in the percentage of reflectance due to aging. EIS showed good protection capability of the three coating schemes. In general, this type of paint system has not previously been evaluated in an extreme environment after 45 months of exposure to the environment. The results showed that the best behavior was found for the system whose top layer was acrylic-aliphatic polyurethane.
|
|
|
Wu, Y. X., Huang, M. Y., He, C. N., Wang, K. T., Nhung, N. T. H., Lu, S. M., et al. (2022). The Influence of Air Nanobubbles on Controlling the Synthesis of Calcium Carbonate Crystals. Materials, 15(21), 7437.
Abstract: Numerous approaches have been developed to control the crystalline and morphology of calcium carbonate. In this paper, nanobubbles were studied as a novel aid for the structure transition from vaterite to calcite. The vaterite particles turned into calcite (100%) in deionized water containing nanobubbles generated by high-speed shearing after 4 h, in comparison to a mixture of vaterite (33.6%) and calcite (66.3%) by the reaction in the deionized water in the absence of nanobubbles. The nanobubbles can coagulate with calcite based on the potential energy calculated and confirmed by the extended DLVO (Derjaguin-Landau-Verwey-Overbeek) theory. According to the nanobubble bridging capillary force, nanobubbles were identified as the binder in strengthening the coagulation between calcite and vaterite and accelerated the transformation from vaterite to calcite.
|
|