Asenjo, F. A., & Mahajan, S. M. (2015). Relativistic quantum vorticity of the quadratic form of the Dirac equation. Phys. Scr., 90(1), 4 pp.
Abstract: We explore the fluid version of the quadratic form of the Dirac equation, sometimes called the FeynmanGellMann equation. The dynamics of the quantum spinor field is represented by equations of motion for the fluid density, the velocity field, and the spin field. In analogy with classical relativistic and nonrelativistic quantum theories, the fully relativistic fluid formulation of this equation allows a vortex dynamics. The vortical form is described by a total tensor field that is the weighted combination of the inertial, electromagnetic and quantum forces. The dynamics contrives the quadratic form of the Dirac equation as a total vorticity free system.

Hojman, S. A., & Asenjo, F. A. (2020). Classical and Quantum Dispersion Relations. Phys. Scr., 95(8), 7 pp.
Abstract: It is showed that, in general, classical and quantum dispersion relations are different due to the presence of the Bohm potential. There are exact particular solutions of the quantum (wave) theory which obey the classical dispersion relation, but they differ in the general case. The dispersion relations may also coincide when additional assumptions are made, such as WKB or eikonal approximations, for instance. This general result also holds for nonquantum wave equations derived from classical counterparts, such as in ray and wave optics, for instance. Explicit examples are given for covariant scalar, vectorial and tensorial fields in flat and curved spacetimes.

Qadir, A., Asenjo, F. A., & Mahajan, S. M. (2014). Magnetic field seed generation in plasmas around charged and rotating black holes. Phys. Scr., 89(8), 7 pp.
Abstract: Previous work by the authors introduced the possibility of generating seed magnetic fields by spacetime curvature and applied it in the vicinity of a Schwarzschild black hole. It was pointed out that it would be worthwhile to consider the effect in other background geometries and particularly in the vicinity of a rotating black hole, which is generically to be expected, astrophysically. In this paper that suggestion is followed up and we calculate generated magnetic field seed due to ReissnerNordstrom and Kerr spacetimes. The conditions for the drive for the seed of a magnetic field is obtained for charged black holes, finding that in the horizon the drive vanishes. Also, the psi Nforce produced by the Kerr black hole is obtained and its relation with the magnetic field seed is discussed, producing a more effective drive.
