del Rio, A. V., Campos, J. L., Da Silva, C., Pedrouso, A., & Mosquera-Corral, A. (2019). Determination of the intrinsic kinetic parameters of ammonia-oxidizing and nitrite-oxidizing bacteria in granular and flocculent sludge. Sep. Purif. Technol., 213, 571–577.
Abstract: The different oxygen affinities of ammonia-oxidizing (AOB) and nitrite-oxidizing bacteria (NOB) are often used to define the operational strategy to achieve partial nitritation (PN) required before the anammox (AMX) process. For this purpose, apparent kinetic parameters are mainly used in the case of granular sludge, which can lead to errors when defining the operational conditions to obtain only nitritation (avoiding nitratation). In the present study, a mathematical methodology is proposed to determine the intrinsic kinetic parameters of AOB and NOB in granular sludge based on data obtained by respirometric assays. Additionally, the oxygen affinity constant (K-O2) and maximum specific rate (r(max)) of flocculent and granular sludge sample, produced under mainstream and sidestream conditions were determined at various temperatures (15, 20 and 30 degrees C). The results show that for granules, the intrinsic K-O2 and r(max) values were lower and higher, respectively, than the apparent values. Furthermore, the K-O2 values for flocs and granules at all of the tested temperatures were lower for NOB than for AOB. The values obtained for the kinetic parameters indicated that it is impossible to maintain partial nitritation by only controlling the dissolved oxygen concentration.
|
Giustinianovich, E. A., Campos, J. L., & Roeckel, M. D. (2016). The presence of organic matter during autotrophic nitrogen removal: Problem or opportunity? Sep. Purif. Technol., 166, 102–108.
Abstract: The simultaneous nitrification, Anammox and denitrification (SNAD) process discovered six years ago is an adaptation of the autotrophic denitrification process that allows for treating nitrogen-rich wastewater streams with moderate amounts of organic carbon. Several authors have noted that it is possible to utilize organic carbon to promote nitrogen removal via the action of denitrifying microorganisms, which can remove the remnant nitrate produced by Anammox bacteria. Thus, SNAD systems can achieve nitrogen removal efficiencies higher than 89%, which is what is expected under autotrophic conditions. Three bacterial groups are responsible for SNAD reactions: ammonium-oxidizing bacteria (AOB), anaerobic ammonium-oxidizing bacteria (AnAOB) and heterotrophic bacteria (HB). Because HB will compete with AOB and AnAOB for oxygen and nitrite, respectively, the system should be operated in such way that a balance among the different bacterial populations is achieved. Here, the results reported in the literature are analyzed to define suitable characteristics of effluents for treatment and operational conditions to allow the SNAD process to be carried out with different types of technologies. (C) 2016 Elsevier B.V. All rights reserved.
|
Pedrouso, A., Aiartza, I., Morales, N., Vazquez-Padin, J. R., Rogalla, F., Campos, J. L., et al. (2018). Pilot-scale ELAN (R) process applied to treat primary settled urban wastewater at low temperature via partial nitritation-anammox processes. Sep. Purif. Technol., 200, 94–101.
Abstract: A single stage partial nitritation and anammox granular pilot scale reactor (600 L) was operated to treat primary settled sewage in an urban wastewater treatment plant. The fed wastewater contained low total nitrogen concentrations of 6-25 mg TN/L and the system operated without temperature control ranging from 18 to 12 degrees C. A control strategy, based on the pH value, was applied to stop the aeration supply. The pH set-point was fixed at 6.0 and allowed obtaining a total nitrogen removal efficiency approximately of 50% treating a load of 67 mg TN/(L.d) without the addition of any chemicals. Although nitrite oxidizing bacteria were present in the inoculated sludge, when the pH-based control was implemented (day 30) the ammonium oxidation was favored compared to the nitrite oxidation activity. Then, the system operated stable the rest of the operational period (days 30-94) despite the presence of organic matter in the wastewater and the high variability of nitrogen load and temperature during the operation. Nitrogen was autotrophically removed accomplishing the stringent discharge limits (10 mg TN/L) and nitrate concentrations in the effluent lower than 3 mg NO3--N/L. Both biomass concentration and granules size increased during the operational period indicating the growth of the biomass inside the reactor and therefore the potential treatment capacity.
|
Pedrouso, A., Correa-Galeote, D., Maza-Marquez, P., Juarez-Jimenez, B., Gonzalez-Lopez, J., Rodelas, B., et al. (2021). Understanding the microbial trends in a nitritation reactor fed with primary settled municipal wastewater. Sep. Purif. Technol., 256, 117828.
Abstract: Partial nitritation was pointed out as the key step to implement the autotrophic nitrogen removal processes at low temperature. This study investigated the initiation and maintenance of a nitritation process with simultaneous COD removal in a sequencing batch reactor (SBR) run at 15 degrees C and fed with primary settled urban wastewater characterized by 42 +/- 10 mg TOC/L and 45 +/- 4 mg NH4+-N/L. A nitrite accumulation ratio of nearly 100% was observed and the long-term (354 days) process stability was successfully maintained despite the municipal wastewater composition fluctuations. The absence of nitrite oxidizing bacteria (NOB) activity was attributed to the free nitrous acid (FNA) in-situ accumulated at high levels (0.02-0.20 mg HNO2-N/L). Despite nitrate production was not observed, the quantification of bacterial groups indicated that NOB were present in the SBR sludge throughout the entire operational period. Ammonium oxidizing bacteria (AOB) abundance and community structure were significantly influenced by the organic matter present in the feeding. Average organic matter removal efficiencies of 80% were obtained without observing any detrimental effect over the nitritation process performance, due to the functional redundancy within both the chemoheterotrophic and AOB communities.
|
Pedrouso, A., del Rio, A. V., Morales, N., Vazquez-Padin, J. R., Campos, J. L., Mendez, R., et al. (2017). Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions. Sep. Purif. Technol., 186, 55–62.
Abstract: The application of autotrophic nitrogen removal processes in the main line of wastewater treatment plants will contribute to achieve its self-energy-sufficiency. However, the effective suppression of nitrite oxidizing bacteria (NOB) activity at the conditions of low temperature and low ammonium concentration (mainstream conditions) was identified as one of the main bottlenecks. In this study, stable partial nitritation at 16 degrees C and 50 mg NH4+-N/L was achieved maintaining inside the reactor free nitrous acid (FNA) concentrations inhibitory for NOB (>0.02 mg HNO2-N/L), without dissolved oxygen concentration control, The FNA inhibitory concentration was generated by the partial nitritation process, and its stimulation was studied with two different inhibitors: sodium azide and nitrite. The microbiological analysis revealed that, throughout the operational period with inhibitory FNA levels, the NOB populations (dominated by Nitrospira) were effectively washed out from the reactor. This is an advantage that allowed maintaining a good stability of the process, even when the FNA concentration was not enough to inhibit the NOB, taking about 40 days to develop significant activity. The observed delay on the NOB development is expected to enable the establishment of corrective actions to avoid the partial nitritation destabilization. The use of the FNA to achieve a stable partial nitritation process is recommended to profit from the natural pH decrease associated to the nitritation process and from its favoured accumulation at low temperatures as those from the mainstream. In this research study an analysis about the influence of ammonium and alkalinity concentrations was also performed to know in which scenarios the FNA inhibitory concentration can be achieved. (C) 2017 Elsevier B.V. All rights reserved.
|
Pedrouso, A., Morales, N., Rodelas, B., Correa-Galeote, D., del Rio, A. V., Campos, J. L., et al. (2023). Rapid start-up and stable maintenance of the mainstream nitritation process based on the accumulation of free nitrous acid in a pilot-scale two-stage nitritation-anammox system. Sep. Purif. Technol., 317, 123851.
Abstract: Two-stage partial nitritation (PN) and anammox (AMX) systems showed promising results for applying auto-trophic nitrogen removal under mainstream conditions. In this study, a pilot-scale (600 L per reactor) two-stage PN/AMX system was installed in a municipal wastewater treatment plant (WWTP) provided with a high-rate activated sludge (HRAS) system for organic carbon removal. The PN/AMX system was operated without tem-perature control (ranging from 11 to 28 degrees C) and was subjected to the same variations in wastewater charac-teristics as the WWTP (22 to 63 mg NH4+- N/L). The developed strategy is simple, does not require the addition of chemicals and is characterised by short start-up periods. The PN process was established by applying a high hydraulic load and maintained by in situ accumulated free nitrous acid (FNA) of 0.015-0.2 mg HNO2-N/L. Based on pH value, a controlled aeration strategy was applied to achieve the target nitrite to ammonium ratio in the effluent (1.1 g NO2--N/g NH4+-N) to feed the AMX reactor. Although NOB were not fully washed out from the system, nitrite accumulation remained (>99 %) stable with no evidence of NOB activity. In the AMX reactor, an overall nitrogen removal efficiency of 80 % was achieved. Regarding effluent quality, 12 +/- 3 mg TN/L was obtained, but 5 mg NO3--N/L was already in the HRAS effluent. The relative abundance of NOB showed a strong negative correlation with the FNA concentration, providing a good strategy for establishing PN under main-stream conditions.
|
Pichel, A., Moreno, R., Figueroa, M., Campos, J. L., Mendez, R., Mosquera-Corral, A., et al. (2019). How to cope with NOB activity and pig manure inhibition in a partial nitritation-anammox process? Sep. Purif. Technol., 212, 396–404.
Abstract: The treatment of pig manure can be performed by anaerobic digestion to diminish the organic matter content and produce biogas, and the resulting digestate has to be subsequently treated for the removal of nitrogenous compounds. The partial nitritation-anammox (PN-AMX) process constitutes an interesting alternative. In the present study, three different short experiments were initially performed to study the influence of nitrite oxidizing bacteria (NOB) present in the inoculum and the pig manure composition over the start-up of the PN-AMX process. The presence of NOB in the inoculum showed to be more crucial than the available anammox activity for a good performance of the PN-AMX process. Batch activity experiments showed a reduction of at least 44.4% in the maximum specific anammox activity due to the pig manure, probably owed to its conductivity (between 6 and 8 mS/cm). In the subsequent long-term operation of the PN-AMX process with non-diluted pre-treated pig manure, the NOB were successfully limited for DO concentrations of 0.1 mg O-2/L, and a nitrogen removal rate (NRR) of 0.1 g N/(L.d) was achieved despite the presence of significant NOB activity in the start-up. A strict control of the DO concentration, with an optimal range of 0.07-0.10 mg O-2/L, was fundamental to balance the removal of nitrogen by PN-AMX and prevent NOB activity. The presence of organic matter, with a ratio sCOD/N in the influent between 0.18 and 1.14 g/g, did not hinder the PN-AMX process, and the contribution of heterotrophic denitrification to the removal of nitrogen was less than 10%.
|
Pugazhenthiran, N., Valdes, H., Mangalaraja, R. V., Sathishkumar, P., & Murugesan, S. (2022). Graphene modified “black {001}TiO2” nanosheets for photocatalytic oxidation of ethylene: The implications of chemical surface characteristics in the reaction mechanism. Sep. Purif. Technol., 292, 121008.
Abstract: In this work, crystal facets, bandgap, size and shape of reduced graphene oxide (rGO) modified anatase {001} black TiO2 nanosheets (rGO-B-TiO2 NSTs) were tailored for the photocatalytic oxidation of ethylene under high humidity content. XRD, Raman and HR-TEM analyses confirm that rGO-B-TiO2 NSTs have a 94 % of exposed {001} facets with high number of oxygen vacancies. In addition, rGO-B-TiO2 NSTs exhibit increased values of surface area and porosity compared to its pristine form. A 48 and 34 mu mol g(-1) of ethylene are adsorbed at the surface of rGO-B-TiO2 NSTs in the absence and in the presence of humidity, respectively. In addition, operando DRIFTS analyses provide the insight of surface interactions between ethylene molecules and adsorption sites of rGO-B-TiO2 NSTs. The photocatalytic removal efficiencies of the synthesized materials under both UV and visible light irradiation proceed as follows: rGO-B-TiO2 NSTs > B-TiO2 NSTs > TiO2 NSTs > commercial TiO2 NPs. Further, ethylene is very quickly photocatalytic oxidized when rGO-B-TiO2 NSTs is applied under UV light irradiation, having a 72 and 92 % ethylene removal in the absence and in the presence of humidity, respectively. Moreover, a 48 and 58 % of ethylene removal takes place in the absence and presence of humidity under visible light irradiation, respectively. Results indicate that rGO-B-TiO2 NSTs boost the photocatalytic activity through their virtue of visible-light absorption properties (Bandgap = 2.61 eV) and the rapid electron-hole separation at the rGO {0 0 1} black TiO2 NSTs interfaces. Such findings are confirmed through UV-visible diffused reflectance, photoelectrochemical and photoluminescence analyses. Nanosheets made of rGO modified {0 0 1} black TiO2 could be used as an effective photocatalyst for the removal of ethylene from large volume fruit storage areas by exploiting a simple light source in the presence of high content of humidity.
|