|
Agostini, C. A., Silva, C., & Nasirov, S. (2017). Failure of Energy Mega-Projects in Chile: A Critical Review from Sustainability Perspectives. Sustainability, 9(6), 17 pp.
Abstract: A number of successive energy crises over the last decade due to the lack of a balanced investment planning in the energy sector in Chile has led to a strong dependence on external sources and also doubled energy prices in the country, thus posing a significant challenge to the local economy. With the purpose of reaching long-term goals while simultaneously addressing short-term urgencies, Chile seeks to build a consistent and integrated energy policy in order to attract investment in the sector. Despite an overall attractive investment climate and encouraging market conditions in the country, the energy sector has been adversely affected, in particular, by the communities' opposition to mega-projects based on their expected environmental and social impacts. The study highlights recent experiences of energy generation mega-projects in terms of addressing aspects of sustainability. Based on these experiences, it discusses underdeveloped role of environmental evaluations and the main regulatory challenges ahead, recommending then public policies to effectively address these challenges.
|
|
|
Araya-Letelier, G., Maturana, P., Carrasco, M., Antico, F. C., & Gomez, M. S. (2019). Mechanical-Damage Behavior of Mortars Reinforced with Recycled Polypropylene Fibers. Sustainability, 11(8), 17 pp.
Abstract: Commercial polypropylene fibers are incorporated as reinforcement of cement-based materials to improve their mechanical and damage performances related to properties such as tensile and flexural strength, toughness, spalling and impact resistance, delay formation of cracks and reducing crack widths. Yet, the production of these polypropylene fibers generates economic costs and environmental impacts and, therefore, the use of alternative and more sustainable fibers has become more popular in the research materials community. This paper addresses the characterization of recycled polypropylene fibers (RPFs) obtained from discarded domestic plastic sweeps, whose morphological, physical and mechanical properties are provided in order to assess their implementation as fiber-reinforcement in cement-based mortars. An experimental program addressing the incorporation of RPFs on the mechanical-damage performance of mortars, including a sensitivity analysis on the volumes and lengths of fiber, is developed. Using analysis of variance, this paper shows that RPFs statistically enhance flexural toughness and impact strength for high dosages and long fiber lengths. On the contrary, the latter properties are not statistically modified by the incorporation of low dosages and short lengths of RPFs, but still in these cases the incorporation of RPFs in mortars have the positive environmental impact of waste encapsulation. In the case of average compressive and flexural strength of mortars, these properties are not statistically modified when adding RPFs.
|
|
|
Caceres, G., Montane, M., Nasirov, S., & O'Ryan, R. (2016). Review of Thermal Materials for CSP Plants and LCOE Evaluation for Performance Improvement using Chilean Strategic Minerals: Lithium Salts and Copper Foams. Sustainability, 8(2), 20 pp.
|
|
|
Caceres, G., Nasirov, S., Zhang, H. L., & Araya-Letelier, G. (2015). Residential Solar PV Planning in Santiago, Chile: Incorporating the PM10 Parameter. Sustainability, 7(1), 422–440.
Abstract: This paper addresses an economic study of the installation of photovoltaic (PV) solar panels for residential power generation in Santiago, Chile, based on the different parameters of a PV system, such as efficiency. As a performance indicator, the Levelized Cost of Energy (LCOE) was used, which indicates the benefit of the facility vs. the current cost of electrical energy. In addition, due to a high level of airborne dusts typically associated with PM10, the effect of the dust deposition on PV panels' surfaces and the effect on panel performance are examined. Two different scenarios are analyzed: on-grid PV plants and off-grid PV plants.
|
|
|
Campos, J. L., Mosquera-Corral, A., del Rio, A. V., & Pedrouso, A. (2022). Sustainable Wastewater Management and Treatment. In Sustainability (Vol. 14, 9137).
|
|
|
Crutchik, D., & Campos, J. L. (2021). Municipal Wastewater Reuse: Is it a Competitive Alternative to Seawater Desalination? Sustainability, 13(12), 6815.
Abstract: Water scarcity is becoming a global challenge to attempts to narrow the water demand-supply gap. To overcome this problem, it is sensible to consider alternative technologies that can exploit non-conventional water resources. The choice of such technologies should be, however, carefully analyzed, because any choice might be unfeasible from an economic point of view. In this work, a methodology to select the most appropriate non-conventional water resource, out of municipal wastewater and seawater, was proposed. Specifically, we attempted to determine which alternative provides cheaper water supply and production costs for domestic uses, depending on the wastewater treatment system used and the water plant capacity. The production of water under three scenarios was analyzed: (i) a city that has a conventional wastewater treatment plant (WWTP); (ii) a city that uses primary treatment and submarine outfalls to treat municipal wastewater; (iii) seawater desalination. The proposed methodology was tested in Chilean cities that are located in areas where water is a scarce resource. The results showed that the reuse of municipal wastewater represents a cost-competitive alternative to seawater desalination, mainly when municipal wastewater is treated in a conventional WWTP and when water flow demand is higher than 1500 m(3)/d. In contrast, seawater desalination becomes more profitable than wastewater reuse when the treatment of municipal wastewater is based on the use of submarine outfalls. This study provides a useful economic tool for promoting municipal wastewater reuse as a non-conventional water source for supplying water to cities that suffer from water scarcity in Chile and in similar areas of the world.
|
|
|
Crutchik, D., Franchi, O., Jeison, D., Vidal, G., Pinto, A., Pedrouso, A., et al. (2022). Techno-Economic Evaluation of Ozone Application to Reduce Sludge Production in Small Urban WWTPs. Sustainability, 14(5), 2480.
Abstract: In Chile, small wastewater treatment plants (WWTPs) (treatment capacity of less than 4,800 m(3)/d) are normally not designed with consideration for the potential valorization of generated sludge. For this reason, they are generally operated at high solids residence times (SRT) (15 d) to promote the decay of biomass, promoting less sludge production and reducing the costs associated with biomass management. Operation at high SRT implies the need for a larger activated sludge system, increasing capital costs. The implementation of a sludge-disintegration unit by ozonation in future WWTPs could enable operation at an SRT of 3 d, with low sludge generation. In this work, we evaluate how the implementation of a sludge-ozonation system in small WWTPs (200-4000 m(3)/d) would affect treatment costs. Four scenarios were studied: (1) a current WWTP operated at an SRT of 15 d, without a sludge ozonation system; (2) a WWTP operated at an SRT of 15 d, with a sludge-ozonation system that would achieve zero sludge production; (3) a WWTP operated at an SRT of 3 d, with a sludge-ozonation system that would provide the same sludge production as scenario 1; (4) a WWTP operated at an SRT of 15 d, with a sludge-ozonation system that would achieve zero sludge production. Economic analysis shows that the treatment costs for scenarios 1 and 2 are similar, while a reduction in cost of up to 47% is obtained for scenarios 3 and 4.
|
|
|
de Kraker, J., Kujawa-Roeleveld, K., Villena, M. J., & Pabon-Pereira, C. (2019). Decentralized Valorization of Residual Flows as an Alternative to the Traditional Urban Waste Management System: The Case of Penalolen in Santiago de Chile. Sustainability, 11(22), 26 pp.
Abstract: Urban residual flows contain significant amounts of valuable nutrients, which, if recovered, could serve as input for the own city needs or those of its immediate surroundings. In this study, the possibilities for decentralized recovery of nutrient rich residual flows in Santiago, Chile, are studied by means of a case study considering technical and socio-economic criteria. In particular, we calculate circularity indicators for organic matter (OM), nitrogen (N), and phosphorus (P) and cost-benefits of household and community on-site technological alternatives. Kitchen waste (KW) and garden residues (GR) as well as urine were considered as system inputs whereas urban agriculture, municipality green, or peri-urban agriculture were the considered destinations for nutrients recovered. The technologies studied were anaerobic digestion, vermicomposting, and composting, while urine storage and struvite precipitation were considered for nutrient recovery from urine. Material flow analysis was used to visualize the inputs and outputs of the baseline situation (the traditional urban waste management system), and of the different household and municipality resource recovery scenarios (the decentralized valorization systems). Our findings show that decentralized valorization of KW and GR are a clear win-win policy, since they can not only produce important environmental benefits for the city in the long run, but also important cost savings considering the landfill fees and residues transportation of the current centralized waste management system.
|
|
|
Gonzalez-Martin, C., Carrasco, M., & Oviedo, G. (2022). Analysis of the Use of Color and Its Emotional Relationship in Visual Creations Based on Experiences during the Context of the COVID-19 Pandemic. Sustainability, 14(20), 12989.
Abstract: Color is a complex communicative element. At the level of artistic creation, this component influences both formal aspects and symbolic weight, directly affecting the construction of the message, and its associated emotion. During the COVID-19 pandemic, people generated countless images transmitting the subjective experiences of this event, and the social network Instagram was used to share this visual material. Using the repository of images created in the Instagram account CAM (The COVID Art Museum), we propose a methodology to understand the use of color and its emotional relationship in this context. The proposed methodology consists of creating a model that learns to recognize emotions via a convolutional neural network using the ArtEmis database. This model will subsequently be applied to recognize emotions in the CAM dataset, also extracting color attributes and their harmonies. Once both processes are completed, we combine the results, generating an expanded discussion on the usage of color and emotion. The results indicate that warm colors and analog compositions prevail in the sample. The relationship between emotions and composition shows a trend in positive emotions, reinforced by the results of the emotional relationship analysis of color attributes (hue, saturation, and lighting).
|
|
|
Joseph, H. S., Pachiappan, T., Avudaiappan, S., Maureira-Carsalade, N., Roco-Videla, A., Guindos, P., et al. (2023). A Comprehensive Review on Recycling of Construction Demolition Waste in Concrete. Sustainability, 15(6), 4932.
Abstract: There have been efforts to use building demolition waste as an alternative aggregate in concrete to decrease the use of natural resources for construction. The World Green Building Council estimates that the construction industry is responsible for more than 50% of all material extracted globally and that construction and demolition waste makes up 35% of global landfills. As a result, incorporating recycled aggregate (RA) in concrete production is a prudent course of action to reduce the environmental impact. This study reviews prior research on using recycled aggregate instead of conventional ingredients in concrete. The composition and morphology of different types of RA, the behavior of RA in fresh and hardened states, keyword co-occurrence and evolution analysis, and the various additives used to enhance the inferior properties of RA are discussed. The RA showed different physical properties when compared with natural aggregate. However, the addition of pozzolanic materials and various pretreatment techniques is desirable for improving the inferior properties of RA. While building waste has been utilized as a substitute for fine and coarse aggregate, prior research has demonstrated that a modified mixing approach, an adequate mixing proportion, and the optimum replacement of cementitious materials are necessary. Based on the review, the recommendation is to use RA at a replacement level of up to 30% and the addition of precoated and pozzolanic materials as a treatment to provide concrete with adequate workability, strength, and durability for structural applications.
|
|
|
Mascareno, A., Henriquez, P. A., Billi, M., & Ruz, G. A. (2020). A Twitter-Lived Red Tide Crisis on Chiloe Island, Chile: What Can Be Obtained for Social-Ecological Research through Social Media Analysis? Sustainability, 12(20), 38 pp.
Abstract: Considering traditional research on social-ecological crises, new social media analysis, particularly Twitter data, contributes with supplementary exploration techniques. In this article, we argue that a social media approach to social-ecological crises can offer an actor-centered meaningful perspective on social facts, a depiction of the general dynamics of meaning making that takes place among actors, and a systemic view of actors' communication before, during and after the crisis. On the basis of a multi-technique approach to Twitter data (TF-IDF, hierarchical clustering, egocentric networks and principal component analysis) applied to a red tide crisis on Chiloe Island, Chile, in 2016, the most significant red tide in South America ever, we offer a view on the boundaries and dynamics of meaning making in a social-ecological crisis. We conclude that this dynamics shows a permanent reflexive work on elucidating the causes and effects of the crisis that develops according to actors' commitments, the sequence of events, and political conveniences. In this vein, social media analysis does not replace good qualitative research, it rather opens up supplementary possibilities for capturing meanings from the past that cannot be retrieved otherwise. This is particularly relevant for studying social-ecological crises and supporting collective learning processes that point towards increased resilience capacities and more sustainable trajectories in affected communities.
|
|
|
Melo, I. C., Alves, P. N., Queiroz, G. A., Yushimito, W., & Pereira, J. (2023). Do We Consider Sustainability When We Measure Small and Medium Enterprises' (SMEs') Performance Passing through Digital Transformation? Sustainability, 15(6), 4917.
Abstract: Small-medium enterprises (SMEs) represent 90% of business globally. Digital Transformation (DT) affects SMEs differently from larger companies because although SMEs have more flexibility and agility for adapting to new circumstances, they also have more limited resources and specialization capabilities. Thus, it is fundamental to measure SMEs' performance considering different perspectives. Here, we describe and analyze the state-of-the-art of DT in SMEs, focusing on performance measurement. We center on whether the tools used by SMEs encompass the triple bottom line of sustainability (i.e., environmental, social, and economic aspects). To do so, in December 2021, we performed a comprehensive systematic literature review (SLR) on the Web of Science and Scopus. In addition, we also explored a novel approach for SLR: topic modeling with a machine learning technique (Latent Dirichlet Allocation). The differences and interchangeability of both methods are discussed. The findings show that sustainability is treated as a separate topic in the literature. The social and environmental aspects are the most neglected. This paper contributes to sustainable development goals (SDGs) 1, 5, 8, 9, 10, and 12. A conceptual framework and future research directions are proposed. Thus, this paper is also valuable for policymakers and SMEs switching their production paradigm toward sustainability and DT.
|
|
|
Montane, M., Caceres, G., Villena, M., & O'Ryan, R. (2017). Techno-Economic Forecasts of Lithium Nitrates for Thermal Storage Systems. Sustainability, 9(5), 15 pp.
Abstract: Thermal energy storage systems (TES) are a key component of concentrated solar power (CSP) plants that generally use a NaNO3/KNO3 mixture also known as solar salt as a thermal storage material. Improvements in TES materials are important to lower CSP costs, increase energy efficiency and competitiveness with other technologies. A novel alternative examined in this paper is the use of salt mixtures with lithium nitrate that help to reduce the salt's melting point and improve thermal capacity. This in turn allows the volume of materials required to be reduced. Based on data for commercial plants and the expected evolution of the lithium market, the technical and economic prospects for this alternative are evaluated considering recent developments of Lithium Nitrates and the uncertain future prices of lithium. Through a levelized cost of energy (LCOE) analysis it is concluded that some of the mixtures could allow a reduction in the costs of CSP plants, improving their competitiveness.
|
|
|
Nasirov, S., Gonzalez, P., Opazo, J., & Silva, C. (2023). Development of Rooftop Solar under Netbilling in Chile: Analysis of Main Barriers from Project Developers' Perspectives. Sustainability, 15(3), 2233.
Abstract: The development of rooftop solar PV generation has significant potential to generate enormous benefits to the electricity systems in achieving emission reduction targets and meeting increasing global energy demand, but could also make the power systems more resilient and affordable. In 2012, the Chilean government introduced a net billing law (Law 20.517) to incentivize consumers to sell their excess renewable electricity into the grid, which was expected to lead to a significant growth in rooftop solar. However, to date, the advancement of these technologies in the country has been very limited due to various barriers. For this reason, identifying and mitigating the main barriers that impede the advancement of development of rooftop solar is necessary to allow the successful deployment of these technologies. Based on data collected from a questionnaire survey and interviews conducted among the project developers in rooftop solar, the authors identify and rank the major barriers to the adoption of these technologies in Chile. Our findings show that the most significant barriers include “high investment and recovery period for the customer”, “lack of incentives to develop projects in the sector”, “rigid regulations regarding project size”, and “long administrative process and grid connection costs”. Furthermore, we discuss the most critical barriers in detail together with policy recommendations to overcome them.
|
|
|
Nasirov, S., O'Ryan, R., & Osorio, H. (2020). Decarbonization Tradeoffs: A Dynamic General Equilibrium Modeling Analysis for the Chilean Power Sector. Sustainability, 12(19), 19 pp.
Abstract: Medium size developing countries like Chile that commit to decarbonization goals need to carefully assess the trade-offs associated to their intensity and timing, since most of the technologies required will be absorbed, not produced, by these countries. A rapid expansion of renewables in the Chilean energy matrix, mostly thanks to exceptional solar and wind resources, combined with a rapid decrease in the cost of renewable energy technologies, intensified current policy debates to reduce the role of coal, which is the largest source of CO2 emissions in the generation mix. Recently, the main generation companies in Chile made a voluntary commitment to not invest in new coal projects that do not include carbon capture and storage systems. In addition, the Chilean government announced its plans to phase out coal plants completely by 2040. In this context, the aim of this research is to study the economy-wide and emission reduction impacts of different decarbonization paths in the Chilean power sector. For this purpose, we consider dynamic simulations using a new energy-oriented version of the Computable General Equilibrium Model (CGE)- General Equilibrium Model for the Chilean Economy (ECOGEM)-Chile which is soft linked to the bottom-up engineering energy model. The results show the major impacts under both the business as usual (BAU) scenario and the coal phase-out scenario. Additionally, the study discusses to what extent the ambitious decarbonization goals of the Chilean government are coherent with the current technological limitations.
|
|
|
Pabon-Pereira, C., Slingerland, M., Hogervorst, S., van Lier, J., & Rabbinge, R. (2019). A Sustainability Assessment of Bioethanol (EtOH) Production: The Case of Cassava in Colombia. Sustainability, 11(14), 23 pp.
Abstract: This paper shows how system design determines sustainability outcomes of cassava bioethanol production in Colombia. The recovery of the energy contained in by-products is recommended as compared to single product production. In particular, this study assesses the energy, greenhouse gases, water, and land use performance of alternative cassava cascades working at different scales, highlighting the implications of including anaerobic digestion technology in the chain. The centralized systems showed a poorer energy and greenhouse gases performance as compared to decentralized ones in part due to the artificial drying of cassava chips in the centralized facility. Under solar drying of cassava chips, systems with anaerobic digestion produced three to five times more energy than demanded and produced greenhouse gas savings of 0.3 kgCO(2eq) L EtOH-1. The water balance output depends upon the water reuse within the ethanol industry, which demands 21-23 L EtOH-1. In the anaerobic digestion scenarios, assuming liquid flows are treated separately, complete water recovery is feasible. Land use for cassava cultivation was calculated to be 0.27-0.35 ha tEtOH(-1). The energy and water content of the material to digest, the options for digestate reuse, and the recovery of the methane produced are major considerations substantially influencing the role of anaerobic digestion within cassava cascade configurations.
|
|
|
Tiwari, A. K., Suozzi, E., Silva, C., De Maio, M., & Zanetti, M. (2021). Role of Integrated Approaches in Water Resources Management: Antofagasta Region, Chile. Sustainability, 13(3), 1297.
Abstract: Water is essential for the survival of all living beings and plays a significant role in the growth of any country ' s economy. At present, water depletion and pollution are a serious challenge due to anthropogenic, geogenic and climate change activities worldwide, including in Chile. The Antofagasta region is located in northern Chile and is the heart of its mining industry, playing a significant role in the country ' s economy. The Antofagasta region ' s main challenge is water shortage and contamination. Due to it, the region ' s local population is facing major difficulties in obtaining the necessary water for domestic, industrial, irrigation, and other uses. Therefore, a water resources management plan is essential for the region to maintain a sustainable environment. Considering the above points, significant parameters, such as slope, aspect, elevation, hillshade, drainage, drainage density and river basin-maps of the Antofagasta region prepared using the digital elevation model (DEM) data in geographic information system (GIS) environment. Besides, a pollution risk level assessment of the study area ' s cities/villages done using GIS application. The important created maps and the identification of pollution risk of cities/villages of the present study could provide significant information to policymakers and help them make a suitable water management plan for the area.
|
|
|
Vahabi, M., Rahimi, E., Lyakhov, P., Bahar, A. N., Wahid, K. A., & Otsuki, A. (2023). Novel Quantum-Dot Cellular Automata-Based Gate Designs for Efficient Reversible Computing. Sustainability, 15(3), 2265.
Abstract: Reversible logic enables ultra-low power circuit design and quantum computation. Quantum-dot Cellular Automata (QCA) is the most promising technology considered to implement reversible circuits, mainly due to the correspondence between features of reversible and QCA circuits. This work aims to push forward the state-of-the-art of the QCA-based reversible circuits implementation by proposing a novel QCA design of a reversible full adder\full subtractor (FA\FS). At first, we consider an efficient XOR-gate, and based on this, new QCA circuit layouts of Feynman, Toffoli, Peres, PQR, TR, RUG, URG, RQCA, and RQG are proposed. The efficient XOR gate significantly reduces the required clock phases and circuit area. As a result, all the proposed reversible circuits are efficient regarding cell count, delay, and circuit area. Finally, based on the presented reversible gates, a novel QCA design of a reversible full adder\full subtractor (FA\FS) is proposed. Compared to the state-of-the-art circuits, the proposed QCA design of FA\FS reversible circuit achieved up to 57% area savings, with 46% and 29% reduction in cell number and delay, respectively.
|
|
|
Yushimito, W. F., Moreno, S., & Miranda, D. (2023). The Potential of Battery Electric Taxis in Santiago de Chile. Sustainability, 15(11), 8689.
Abstract: Given the semi-private nature of the mode, the conversion of taxi vehicles to electric requires a feasibility analysis, as it can impact their operations and revenues. In this research, we assess the feasibility of taxi companies in Santiago de Chile operating with battery electric vehicles (BEVs), considering the current electric mobility infrastructure of the city. We used a large database of GPS pulses provided by a taxi app to obtain a complete picture of typical taxi trips and operations in the city. Then, we performed an assessment of the feasibility of the fleet conversion by considering battery capacity, driving range, proximity to recharging stations, and charging power. The results are promising, as the number of completed trips ranges from 87.35% to 94.34%, depending on the BEV driving range. The analysis shows the importance of installing fast charging points in the locations or BEV driving ranges.
|
|