|
Aybar, M., Perez-Calleja, P., Li, M., Pavissich, J. P., & Nerenberg, R. (2019). Predation creates unique void layer in membrane-aerated biofilms. Water Res., 149, 232–242.
Abstract: The membrane-aerated biofilm reactor (MABR) is a novel wastewater treatment technology based on oxygen-supplying membranes. The counter diffusion of oxygen and electron donors in MABRs leads to unique behavior, and we hypothesized it also could impact predation. We used optical coherence tomography (OCT), microsensor analyses, and mathematical modeling to investigate predation in membrane-aerated biofilms (MABs). When protozoa were excluded from the inoculum, the MAB's OCT-observable void fraction was around 5%. When protozoa were included, the void fraction grew to nearly 50%, with large, continuous voids at the base of the biofilm. Real-time OCT imaging showed highly motile protozoa in the voids. MABs with protozoa and a high bulk COD (270 mg/L) only had 4% void fraction. DNA sequencing revealed a high relative abundance of amoeba in both high and low-COD MABs. Flagellates were only abundant in the low-COD MAB. Modeling also suggested a relationship between substrate concentrations, diffusion mode (co- or counter-diffusion), and bioflim void fraction. Results suggest that amoeba proliferate in the bioflim interior, especially in the aerobic zones. Voids form once COD limitation at the base of MABs allows predation rates to exceed microbial growth rates. Once formed, the voids provide a niche for motile protozoa, which expand the voids into a large, continuous gap. This increases the potential for biofilm sloughing, and may have detrimental effects on slow-growing, aerobic microorganisms such as nitrifying bacteria. (C)2018 Elsevier Ltd. All rights reserved.
|
|
|
Crutchik, D., Frison, N., Eusebi, A. L., & Fatone, F. (2018). Biorefinery of cellulosic primary sludge towards targeted Short Chain Fatty Acids, phosphorus and methane recovery. Water Res., 136, 112–119.
Abstract: Cellulose from used toilet paper is a major untapped resource embedded in municipal wastewater which recovery and valorization to valuable products can be optimized. Cellulosic primary sludge (CPS) can be separated by upstream dynamic sieving and anaerobically digested to recover methane as much as 4.02 m(3)/capita.year. On the other hand, optimal acidogenic fermenting conditions of CPS allows the production of targeted short-chain fatty acids (SCFAs) as much as 2.92 kg COD/capita . year. Here propionate content can be more than 30% and can optimize the enhanced biological phosphorus removal (EBPR) processes or the higher valuable co-polymer of polyhydroxyalkanoates (PHAs). In this work, first a full set of batch assays were used at three different temperatures (37, 55 and 70 degrees C) and three different initial pH (8, 9 and 10) to identify the best conditions for optimizing both the total SCFAs and propionate content from CPS fermentation. Then, the optimal conditions were applied in long term to a Sequencing Batch Fermentation Reactor where the highest propionate production (100-120 mg COD/g TVSfed.d) was obtained at 37 degrees C and adjusting the feeding pH at 8. This was attributed to the higher hydrolysis efficiency of the cellulosic materials (up to 44%), which increased the selective growth of Propionibacterium acidopropionici in the fermentation broth up to 34%. At the same time, around 88% of the phosphorus released during the acidogenic fermentation was recovered as much as 0.15 kg of struvite per capita . year. Finally, the potential market value was preliminary estimated for the recovered materials that can triple over the conventional scenario of biogas recovery in existing municipal wastewater treatment plants. (C) 2018 Elsevier Ltd. All rights reserved.
|
|